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CS-523 Advanced Topics on
Privacy Enhancing Technologies

Location privacy

Theresa Stadler
SPRING Lab
theresa.stadler@epfl.ch

= Some slides/ideas adapted from: Carmela Troncoso, George Danezis, Jean-Pierre Hubaux, Reza Shokri



=" Introduction 2
Location privacy

Course aim: learn toolbox for privacy engineering

notions
C} to express location privacy
;
tools
l_@ to quantify location privacy
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= Goals
What should you leam today?

= Understand protecting privacy requires more than hiding contents

= Understand the privacy issues of location data
 Trust assumptions
* Adversarial models

= Understand how to protect location privacy
« How to mitigate adversarial inference capability
« How to quantify privacy loss

= Understand practical issues when protecting individuals’ whereabouts
* It is very, very, very hard (no known way to get good protection)



="t Common thought:
Privacy is all about data
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="t Common thought:
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== This might be a good model
if the world was like this...




== Butin reality...




=" But in reality...

Device type, OS,

applications/software,
Sensors

Metadata all around



=PFL - Metadata encodes a lot of information

| Pseudoidentifier | Device type, OS,

Pseudoidentifier | applications/software —
Sensitive , Sensars,.... [Essgt?gr']demmer IP, MAC, routes,...

Pseudoidentifi :
| Sscudoidentiier Metadata all around






tPFL  Location datais useful...
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=PFL  But contains a lot of sensitive information

About our health status
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=PFL  |nference: Points of interest (POIs)

What is a POI? A specific location that someone may find useful or interesting
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=PFL  |nference: Points of interest (POIs)

[Why are POls important? Because our movements are unigue J

[De Montjoye et al 2013] [De Montjoye et al 2015]: 4 spatio-temporal points are enough to uniquely identify 95% of
people in a mobile phone database of 1.5M people and to identify 90% of people in a credit card database of 1M people
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=PFL  [nference: Points of interest (POIs) 15

[Why are POIs important? Because our home & work location are unique identifiers J

[Golle & Partridge 2009] given home & work, median individual’s anonymity set in the U.S. working population is 1,
21 and 34,980, for locations known at the granularity of a census block, census track and county respectively
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£PFL  Inference: Points of interest (POIs) t6

[Why are POls important? Because our home & work location are unique identifiers ]

[Golle & Partridge 2009] given home & work, median individual’s anonymity set in the U.S. working population is 1,
21 and 34,980, for locations known at the granularity of a census block, census track and county respectively
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=PFL  [nference: Points of interest (POIs) 17

[Why are POls important? Because our home & work location are easily inferred J

[Zhang & Bolot 2011] showed that for voice call and SMS records from cellular networks “top 2" locations likely
correspond to home and work locations, the "top 3" to home, work, and shopping/school/commute path locations
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Inference: Points of interest (POls)

[Why are POls important? Because they allow to predict where someone moves next J

[Gambs et al 2012] Accuracy for the prediction of the next location in the range of 70% to 95%
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=PFL  |nference: Points of interest (POIs)

[Why are POls important? Because they allow to infer demographics and other attributes J

[Pang and Zhang 2017] [Felbo et al 2017] [Bilogrevic et al 2015] [Cho et al 2010] [Liao et al 2005] [Liao et al 2007]
present machine learning based frameworks to infer sensitive attributes from location data

Feature extraction

Purpose Inference
(SVM, DT)

Utility Estimation
(Regression)
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Text related, geographical,
semantic and user patterns
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Purpose of the check-in, given
the feature vector

Given purpose, semantic and
geographical obfuscation
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=P7L  Inference: Points of Interest (POIs)

[How to extract POIs? Clustering techniques [Ester et al 1996][Ashbrook & Starner 2003][Krumm 2007]}

[Ester et al 1996]: Simple yet effective way to infer POls: DBSCAN

* And after finding the clusters/POIs?
. Home and work: identified by time

Further split clusters
(e.g., using X-Means [Pelleg & Moore 2000])

. Inferences can be automatized using reverse
& geo-coding (e.g., on the centroids)!

m  https://www.datacamp.com/tutorial/dbscan-clustering-algorithm



= Sowhere does all of this data
come from?

At the application level

= User location revealed as part of application functionality
= Application might access location for personalization (or tracking)

= Location might be revealed trough metadata of files accessible by the application e.g. images

At the network level

= |P-based geolocation
= WiFi access points (SSIDs, MAC addresses)

= Bluetooth beacons

Likely many more...
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="~ How to protect location privacy

=====g\issTech |

4 main techniques:
Perturbation
Hiding
Generalization
Adding dummies
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=PFL  How to protect location privacy
Perturbation

Spatial Obfuscation: Perturbation of locations using noise [puckham & Kulik 2005]

Geo-indistinguishability [Andres et al. 2013]

If two points are close, their obfuscated points are close

obfuscation mechanism \ / distance measure
d[@=K(®)| ® =K(®"] <ed[®]®]

obfuscated point original point




=PFL  How to protect location privacy
Perturbation

Spatial Obt =prL Differential Privacy a

Formal Definition
Geo-indistir .

If two points are / Oa ;%‘ \

A mechanism M is e-differentially private if for all neighbouring
databases D and D_, which differ in only one individual

obfuscation me: ‘\ 'ﬁ(
I

d|@= K( P[M(D) = 0] < e*-P[M(D_,) = 0]

obfuscated poin
... and this must be true for all possible outputs O




=PFL  How to protect location privacy
Perturbation

Spatial Obfuscation: Perturbation of locations using noise [puckham & Kulik 2005]

Geo-indistinguishability [Andres et al. 2013]

If two points are close, their obfuscated points are close

d[@=K(*) | ® = K(o"] < ed[*]®']

I —

Add 2-dimensional
- e-differential privacy noise

26



=PFL  How to protect location privacy
Perturbation

Spatial Obfuscation: Perturbation of locations using noise [puckham & Kulik 2005]

Geo-indistinguishability [Andres et al. 2013]

If two points are close, their obfuscated points are close

d[@=K(*) | ® = K(o"] < ed[*] ']
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=P*L How to protect location privacy
Perturbation

Spatial Obfuscation: Perturbation of locations using noise [puckham & Kulik 2005]

— Geo-indistinguishability [andres et al. 2013]

As with differential privacy, we have
sequential composition: protection decreases
linearly with every sample - privacy degrades quickly

— Release Geo-indistinguishability [Chatzikokolakis et al. 2014]

only draw noise when needed to keep utility
(i.e., when moving far from previous sample)

28



=PFL  How to protect location privacy
Perturbation

Spatial Obfuscation: Perturbation of locations using noise [puckham & Kulik 2005]

— Geo-indistinguishability [andres et al. 2013]

— Optimal remapping [Chatzikokolakis et al 2017] [Oya et al 2017]
Choose the best of the geo-indistinguishable options

Requires a prior distribution to decide what’s “best”!

29



=PFL  How to protect location privacy
Hiding

Hiding: Do not report some locations [Huang 2006][Hoh 2007]

30



=PFL  How to protect location privacy
Hiding

Hiding: Do not report some locations [Huang 2006][Hoh 2007]

Random Hiding: Reveal a percentage of the
points chosen at random (e.g, 50%)
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=PFL  How to protect location privacy
Hiding

Hiding: Do not report some locations [Huang 2006][Hoh 2007]

Release: Reveal points only when needed

Archizoom 518 -
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=PFL  How to protect location privacy

Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]
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=PFL  How to protect location privacy

Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]

Discretization: Map to grid points (Rounding -
F|OOI’) [Krumm 2009]

& [Ste rhing]HoteljlEausani
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=PFL  How to protect location privacy

Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]

EE====cWissTech @l

Discretization: Map to grid points (Rounding -
F|OOI’) [Krumm 2009]

Cloaking: Reveal a region

Fixed cloaks: always map to the same cloak

& [Ste ring]Hotelflfausa
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=PFL  How to protect location privacy

Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]

Discretization: Map to grid points (Rounding -
F|OOI’) [Krumm 2009]

Cloaking: Reveal a region

Fixed cloaks: always map to the same cloak

Location-dependent cloaks (centered on location)
k-anonymity based

& [Ste ring]Hotelflfausa
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=PFL  Howto protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works
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=PFL  Howto protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works

The anonymization service
computes the cloak R
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u
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.....
----------

Anonymization
service
k=3
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=PFL  Howto protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works

And sends the cloak and query to
the location service
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Anonymization
service
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=PFL  Howto protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works
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Goal: Location privacy towards
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=PFL  Howto protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works

Problem 1: k != location privacy
Rvs. R’ ( k=3 ) have different size
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=PFL  How to protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works

Problem 2: If service provider knows location,
e.g., from query metadata, we have anonymity
but not location privacy!!
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=PFL  Howto protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works

Problem 3: If service provider knows statistical
information, e.g., public data, location privacy does
not depend on people’s actual location!!
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Anonymization
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=PFL  Howto protect location privacy
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works

Problem 4: If the service provider has no additional knowledge,
Location privacy and anonymity can be achieved without
cloaks!!

L
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(R.Q)

Anonymization
service

Cloaking based on k-anonymity is a useful tool

for anonymity
not location privacy
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=PFL  How to protect location privacy
Adding dummies

Dummy Locations: add decoy locations [Meyerovitz & Choudhury 2009]

Difficult to create plausible dummies
[Chow & Golle 2009]







=PFL  How can we measure location privacy?
Strategic adversary

Strategic adversary

 Knows the defense mechanism
®=K(@®)

 Given released location, estimates
most likely real location

Computing this probability is hard for
location traces: too many plausible options.
— Use sampling methods (MCMC)




=PFL  How canwe measure location privacy?
Privacy error

Privacy error

Accuracy: how much variance in estimation
Confidence interval

Correctness. how close to reality
Adversary’s error [Shokri et al 2011]

Certainty: how sure of the guess
Entropy [Oya et al 2017]

af o ] b
com Digital fabl} |
e - i

S Starling]HotelflE

o
aus

48



=PFL  How can we measure location privacy?
Privacy emor &

Real location @ Inferred location

True positive

False positive

Privacy is achieved if the adversary has

Low precision: many false inferred locations
TP

TP+FP

Precision =

Low recall: misses many real locations

TP
Recall = ——
TP+FN

False negative

¢ Stailingitiotel Laus




=L Ifwe use these measures to assess the protections...

Protects even against strong privacy
adversaries that might have any auxiliary — Swissliech @
data but does not retain data utility ¥

[
»
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0000
[]

T,

‘o‘

Weak assumptions about privacy
adversaries preserves data utility but
does not protect location privacy

Resist strong privacy adversaries

Is useful for intended service
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=PFL  What about hiding in the crowd?

Aggregate statistics




https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/
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=P What can be inferred from
aggregate location data?

Train machine learning models to distinguish
statistical patterns with/without outlier

Outliers create “particular” statistics

4

Location is Identity @!
you av when you are . v
(o8

Aggregates reflect statistics of the population



=L What can be inferred from
location data?

Knock Knock, Who’s There?
Membership Inference on Aggregate Location Data*

Apostolos Pyrgelis Carmela Troncoso Emiliano De Cristofaro
University College London IMDEA Software Institute University College London
apostolos.pyrgelis. 14 @ucl.ac.uk carmela. il org e i .ac.uk

MATTERS ARISING Ghock for updates
oPeN

On the difficulty of achieving Differential Privacy in
practice: user-level guarantees in aggregate
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(@) TFL (m = 0,500, T3] = 168) (8) SEC (om = 500, 73] = 163
Fig. 12: Privacy Gain (PG) achieved by differentially private mechanisms with different values of ¢, against a MLP classifir teained on raw
aggregates and tested on noisy aggregates.
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Fig. 13: Privacy Gain (PG) achieved by differentially private mechanisms with different values of ¢, against a MLP classifier trained and tested
on noisy aggregates.

Location is Identity

Aggregates reflect statistics of the population
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=PrL

Take aways

= Location data contains a lot of sensitive information about us
« About our health status, our religious beliefs, our financial situation, whom we interact with

= Simple inference attacks can extract this information

= Hard to protect location data against inference attacks while preserving its utility

« Techniques like perturbation, generalisation, dummies, hiding all come with
stringent privacy utility trade-offs

« Aggregation is a weak privacy-preserving mechanism: membership attacks are
feasible
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