

CS-523 Advanced Topics on Privacy Enhancing Technologies

Location privacy

Theresa Stadler
SPRING Lab
theresa.stadler@epfl.ch

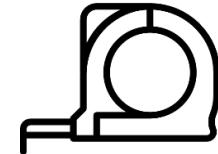
- Some slides/ideas adapted from: Carmela Troncoso, George Danezis, Jean-Pierre Hubaux, Reza Shokri

Introduction

Location privacy

Course aim: learn **toolbox for privacy engineering**

toolbox
around location privacy
implications



notions
to express location privacy

tools
to quantify location privacy

tools
to mitigate location-related
inferences

Application Layer

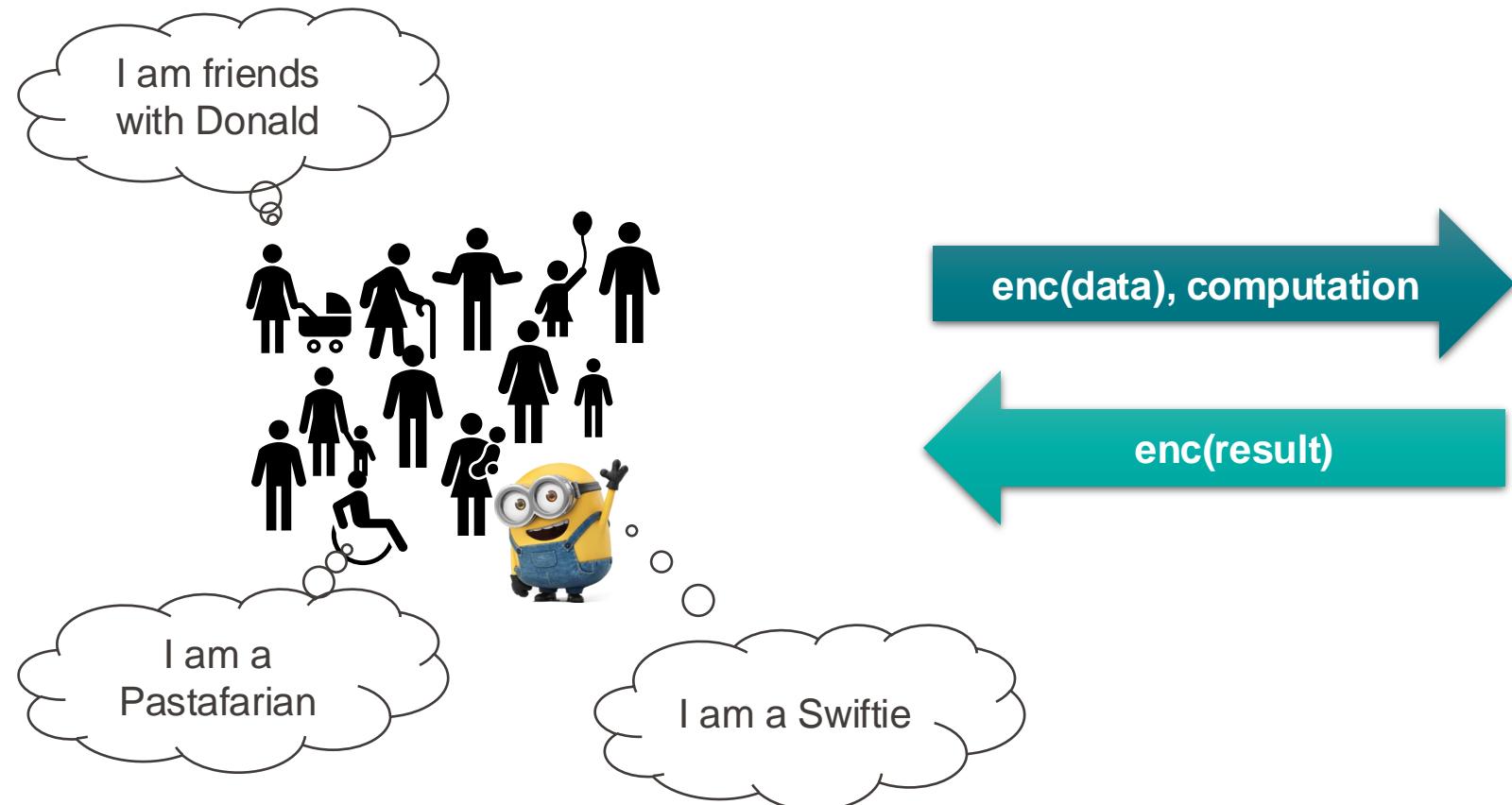
Network Layer

Goals

What should you learn today?

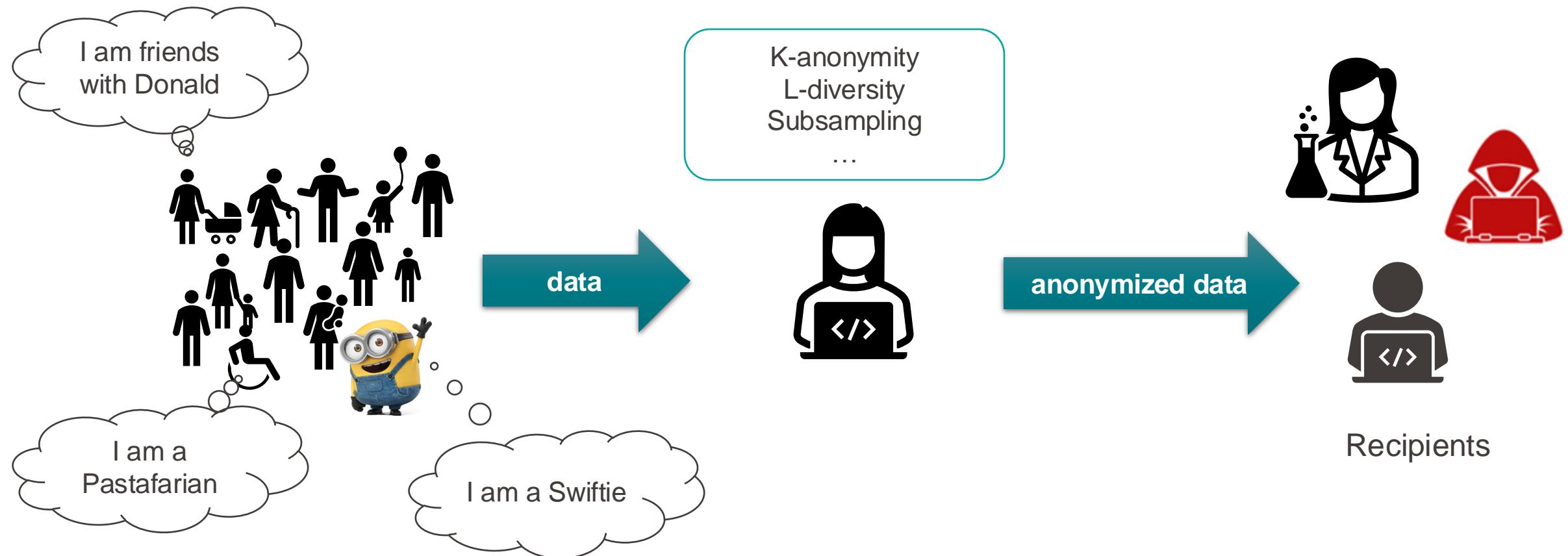
- Understand protecting privacy requires **more than hiding contents**
- Understand the **privacy issues of location data**
 - Trust assumptions
 - **Adversarial models**
- Understand how to protect **location privacy**
 - **How to mitigate** adversarial inference capability
 - **How to quantify** privacy loss
- Understand **practical issues** when protecting individuals' whereabouts
 - It is very, very, very hard (no known way to get good protection)

Common thought: Privacy is all about data

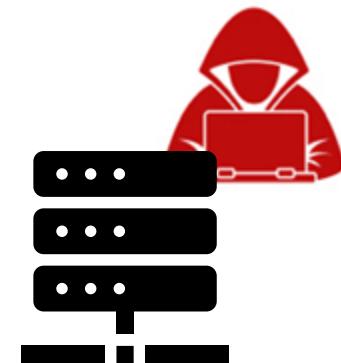


Homomorphic encryption
Multi party computation
Anon credentials
...

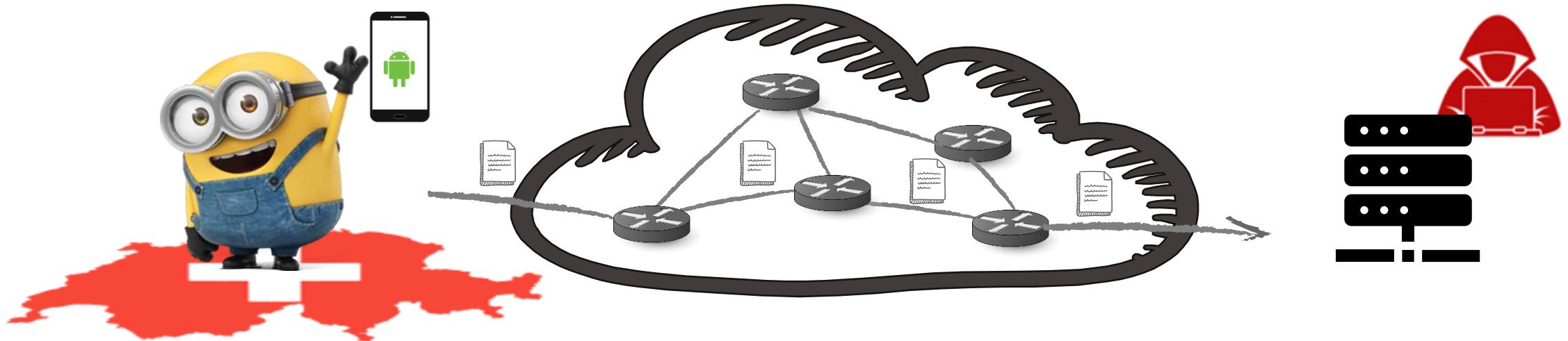
Common thought: Privacy is all about data



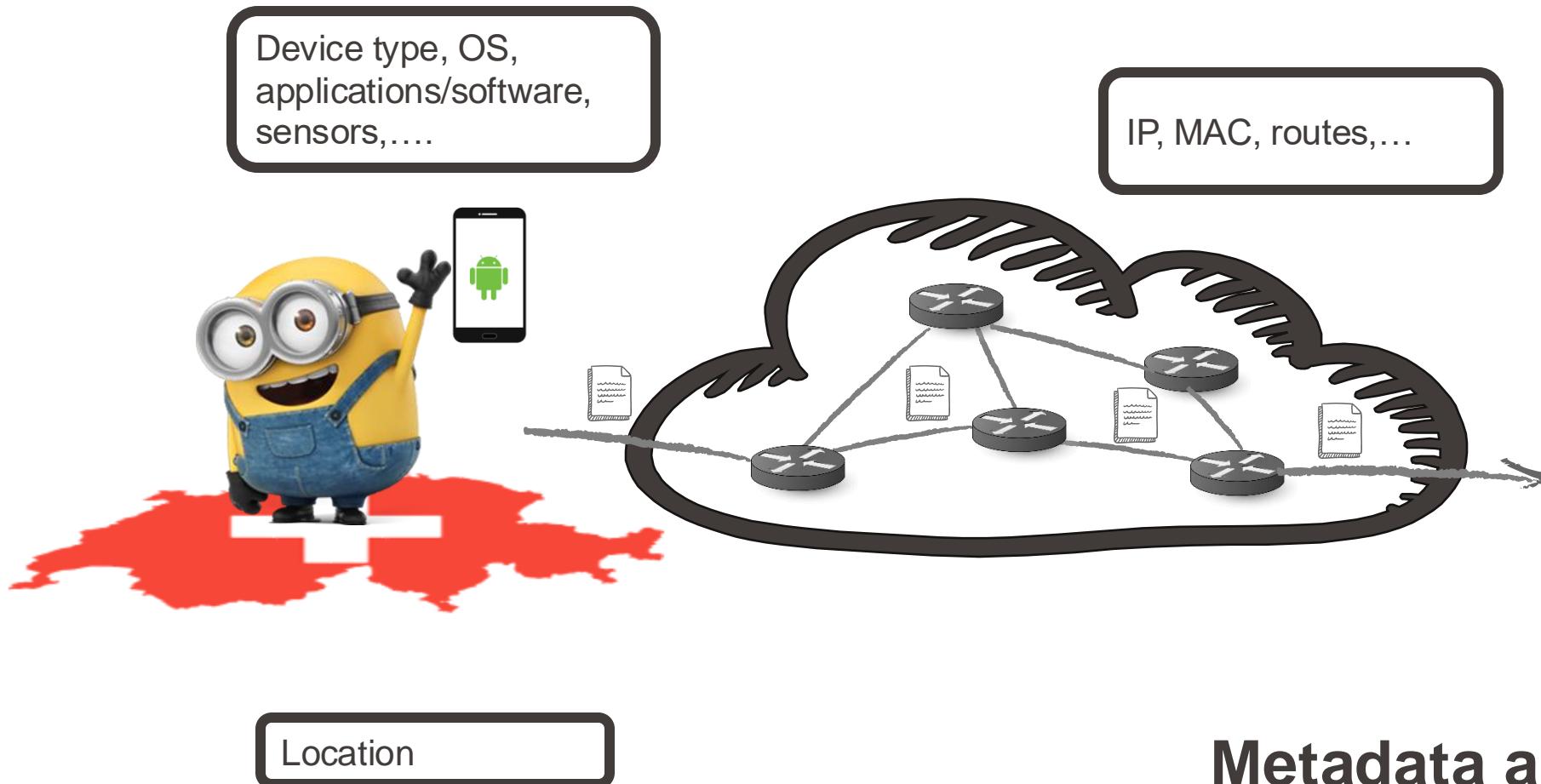
**This might be a good model
if the world was like this...**



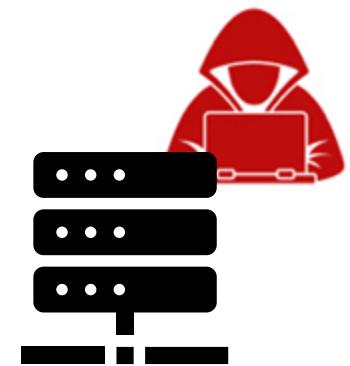
But in reality...



But in reality...



Metadata all around



Metadata encodes a lot of information

Pseudoidentifier

Device type, OS,
applications/software
, sensors,....

Pseudoidentifier

Sensitive

Pseudoidentifier
Location

IP, MAC, routes,...

Pseudoidentifier
Sensitive

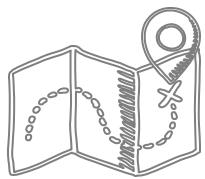
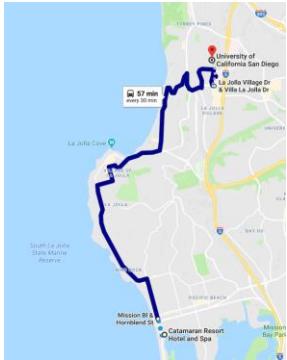
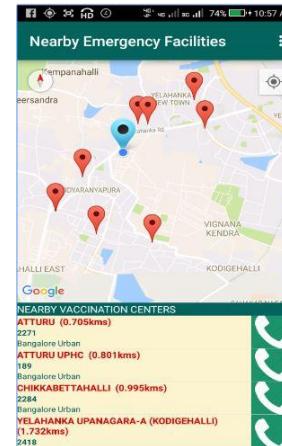
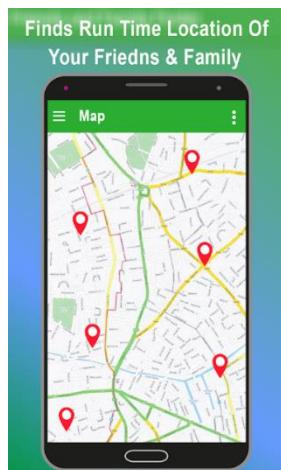
Location

Metadata all around

Location
privacy

Location data is useful...

Bob



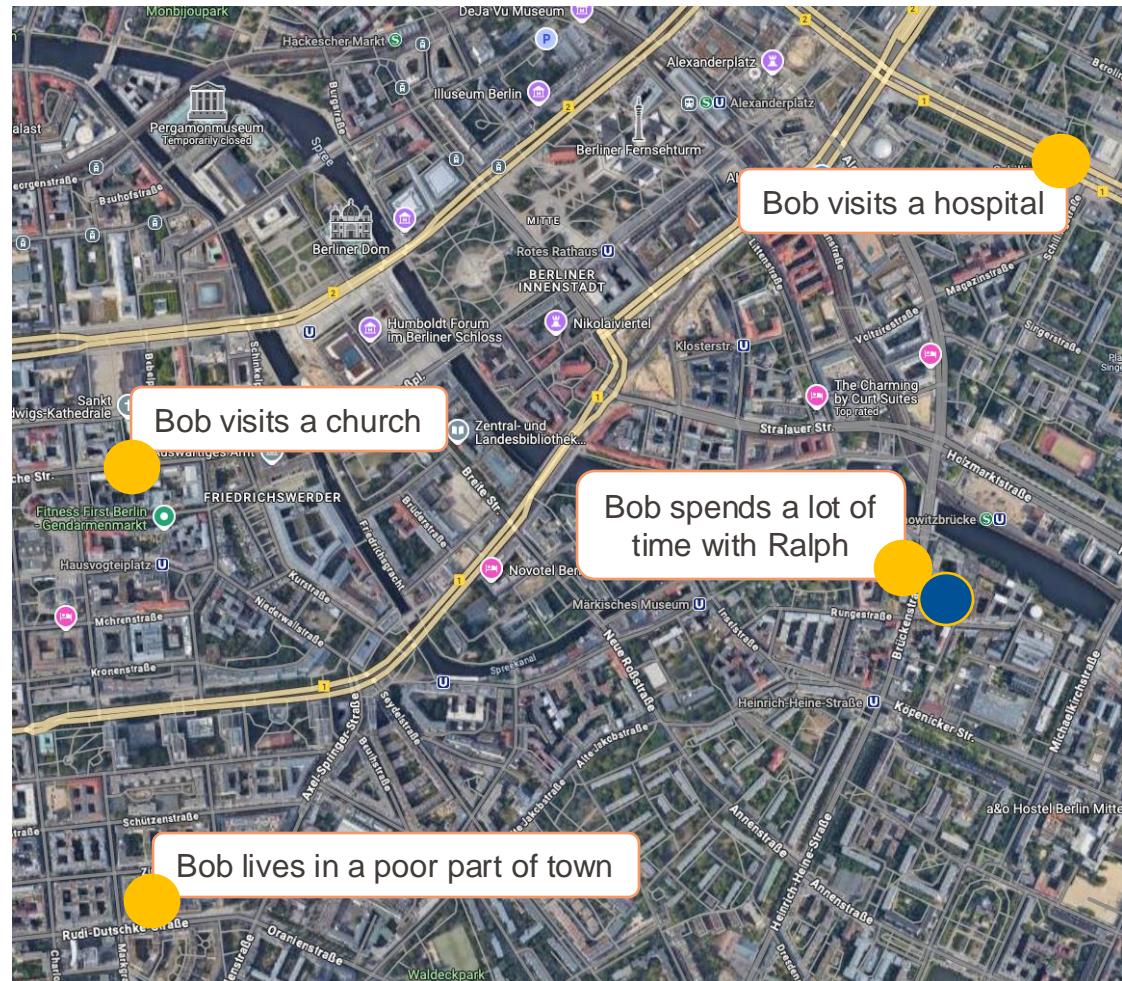
Location Intelligence

Google search hits
1770M in Mar'24
 (749M in Apr'22)
 (653M in Apr'20)
 (355M in Apr'19)
 (197M in Jul' 18)
 (649K in Feb' 18)

But contains a lot of sensitive information

About our religious beliefs

about our financial situation

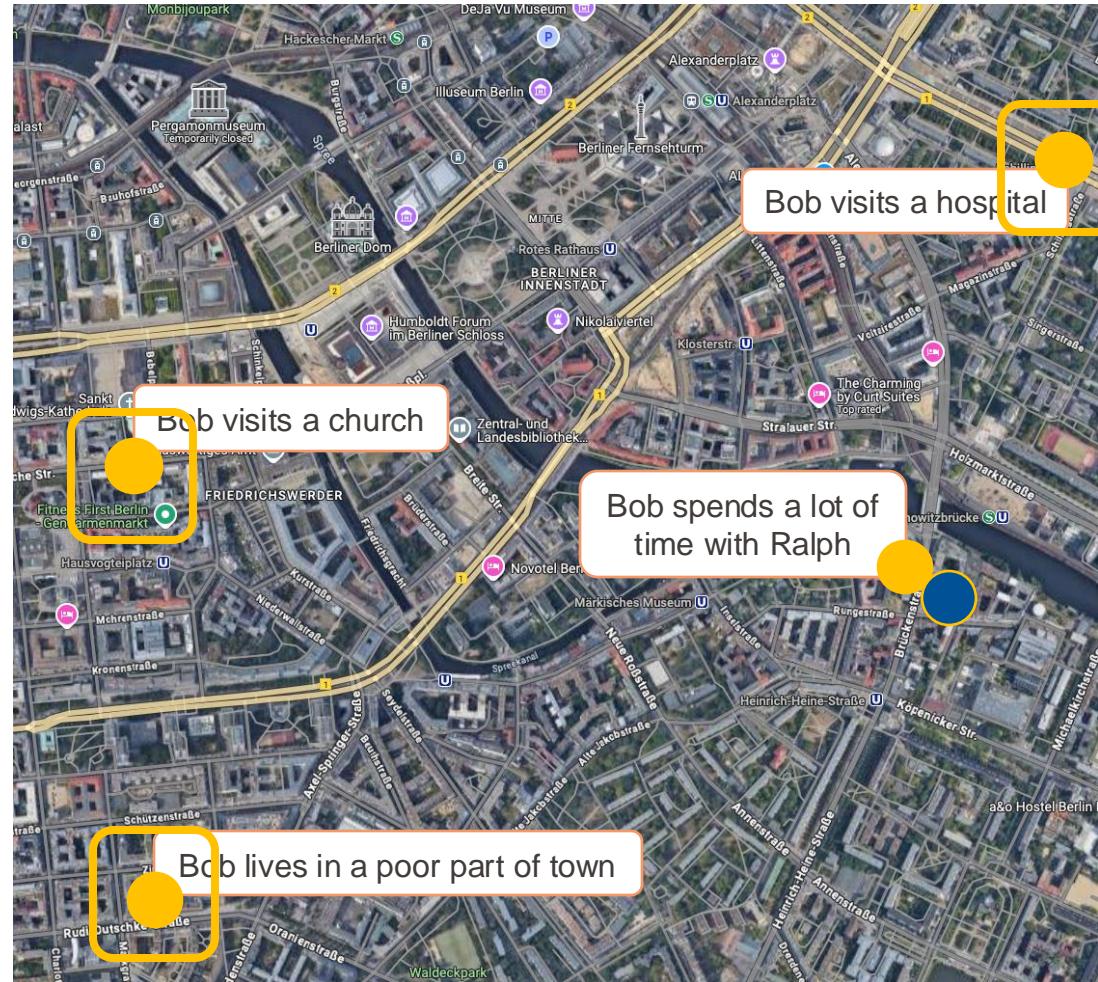


about our health status

about our social relationships

Inference: Points of Interest (POIs)

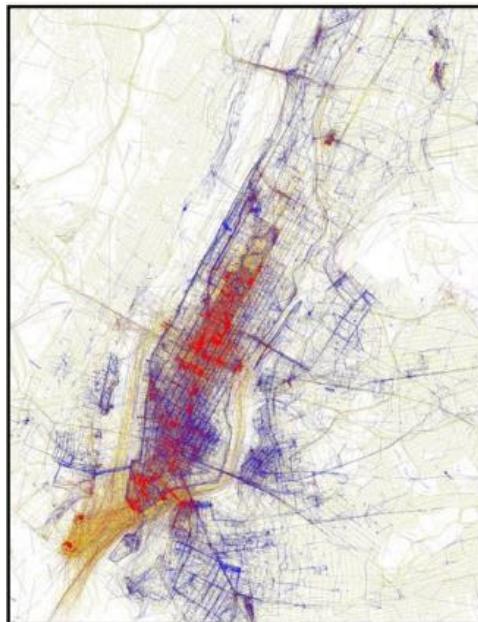
What is a POI? A specific location that someone may find useful or interesting



Why are POIs important? Because our movements are unique

[De Montjoye et al 2013] [De Montjoye et al 2015]: 4 spatio-temporal points are enough to uniquely identify 95% of people in a mobile phone database of 1.5M people and to identify 90% of people in a credit card database of 1M people

+



=

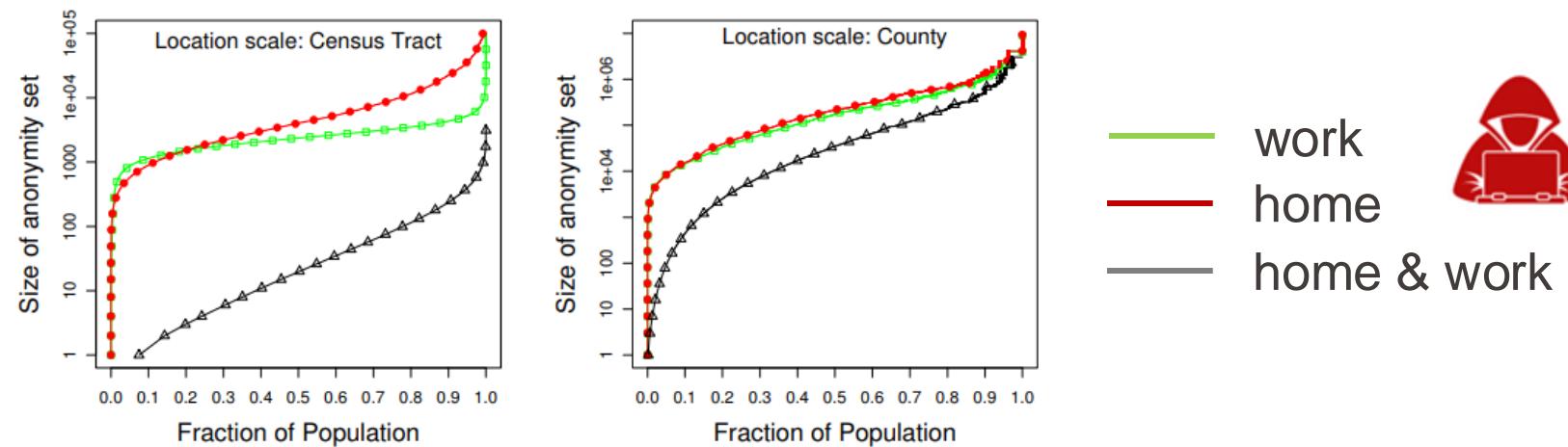
Four known points
you were at

Anonymized location dataset

All your whereabouts

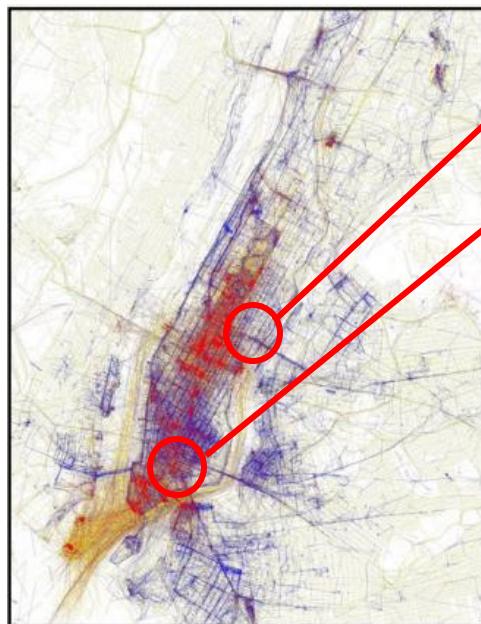
Why are POIs important? Because our home & work location are unique identifiers

[Golle & Partridge 2009] given home & work, median individual's anonymity set in the U.S. working population is 1, 21 and 34,980, for locations known at the granularity of a census block, census tract and county respectively



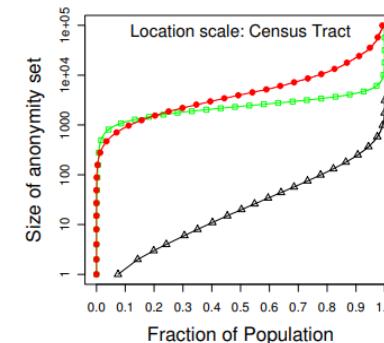
Why are POIs important? Because our home & work location are unique identifiers

[Golle & Partridge 2009] given home & work, median individual's anonymity set in the U.S. working population is 1, 21 and 34,980, for locations known at the granularity of a census block, census tract and county respectively



Mostly at night
Mostly from 9am to 5pm

+



Anonymized location data

Mostly from 9am to 5pm

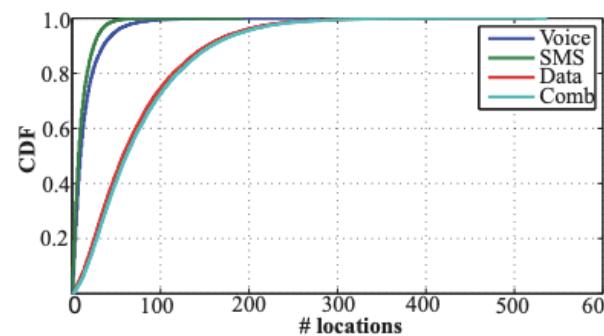
=



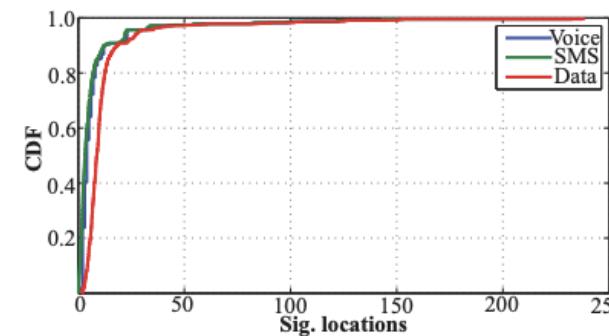
All your whereabouts

Why are POIs important? Because our home & work location are easily inferred

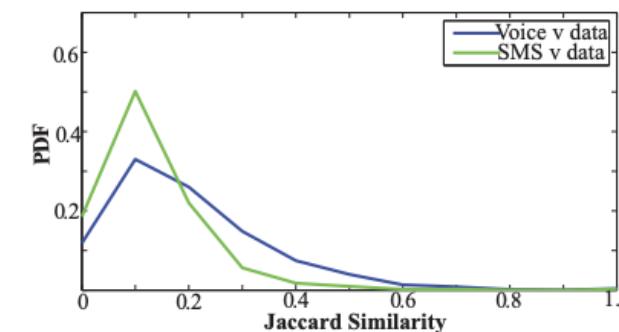
[Zhang & Bolot 2011] showed that for voice call and SMS records from cellular networks “*top 2*” locations likely correspond to home and work locations, the “*top 3*” to home, work, and shopping/school/commute path locations



(a) Distinct locations per user



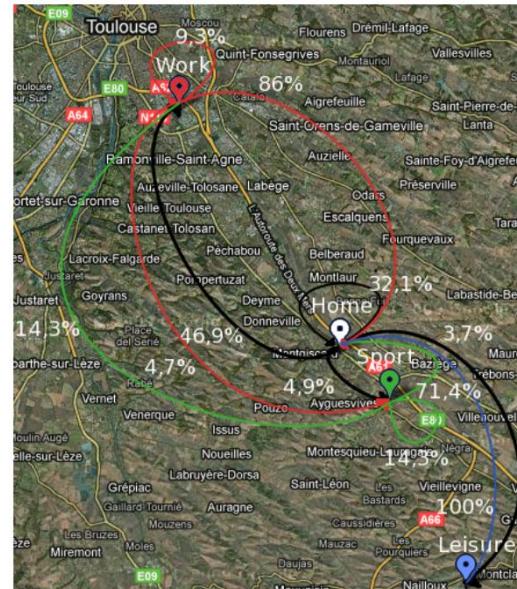
(b) Significant loc.



(c) Overlap in significant loc.

Why are POIs important? Because they allow to predict where someone moves next

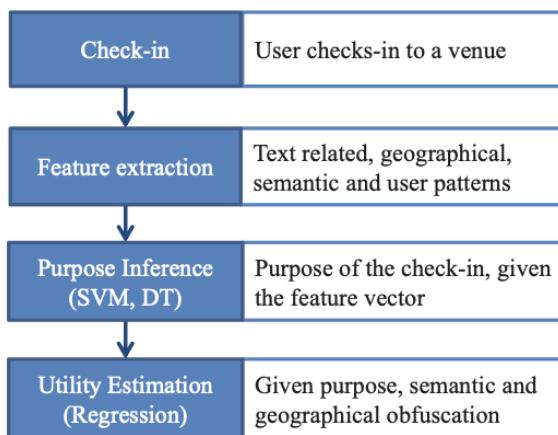
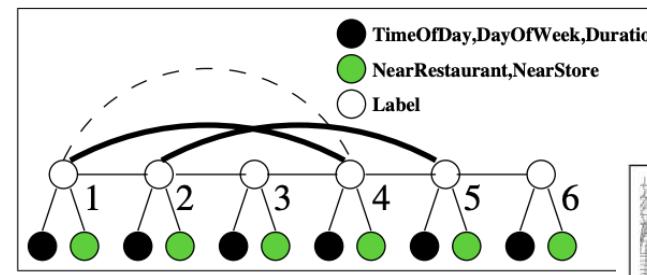
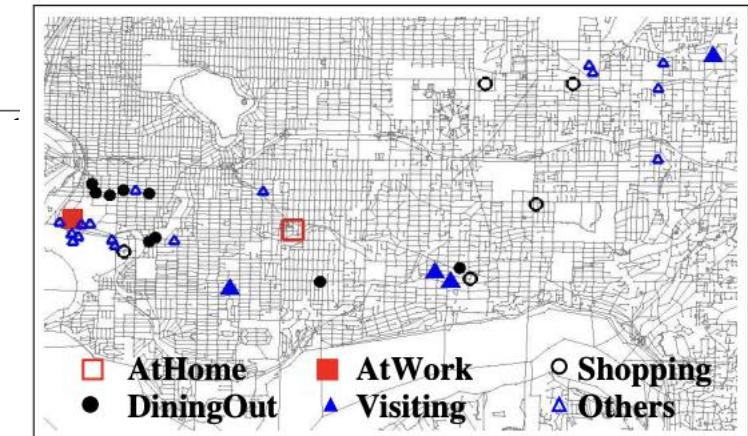
[Gambs et al 2012] Accuracy for the prediction of the next location in the range of 70% to 95%



A hidden Markov model of individual movement patterns

Why are POIs important? Because they allow to infer demographics and other attributes

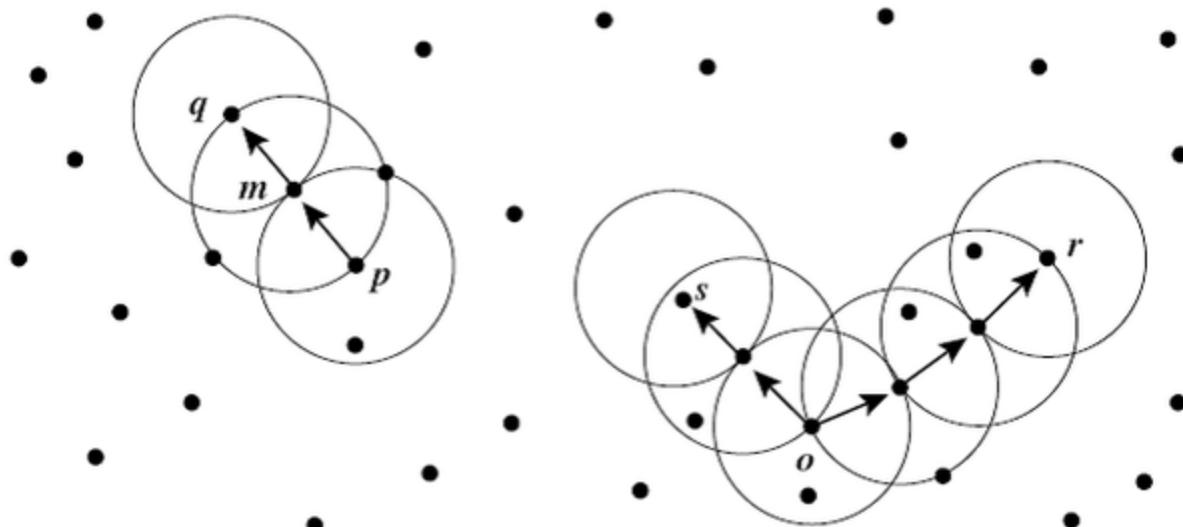
[Pang and Zhang 2017] [Felbo et al 2017] [Bilogrevic et al 2015] [Cho et al 2010] [Liao et al 2005] [Liao et al 2007] present **machine learning based frameworks** to infer sensitive attributes from location data



Inference: Points of Interest (POIs)

How to extract POIs? Clustering techniques [Ester et al 1996][Ashbrook & Starner 2003][Krumm 2007]

[Ester et al 1996]: Simple yet effective way to infer POIs: **DBSCAN**



And after finding the clusters/POIs?

Home and work: identified by time

Further split clusters
(e.g., using X-Means [Pelleg & Moore 2000])

Inferences can be automated using reverse geo-coding (e.g., on the centroids)!

So where does all of this data come from?

At the application level

- User location revealed as part of application functionality
- Application might access location for personalization (or tracking)
- Location might be revealed through metadata of files accessible by the application e.g. images

At the network level

- IP-based geolocation
- WiFi access points (SSIDs, MAC addresses)
- Bluetooth beacons

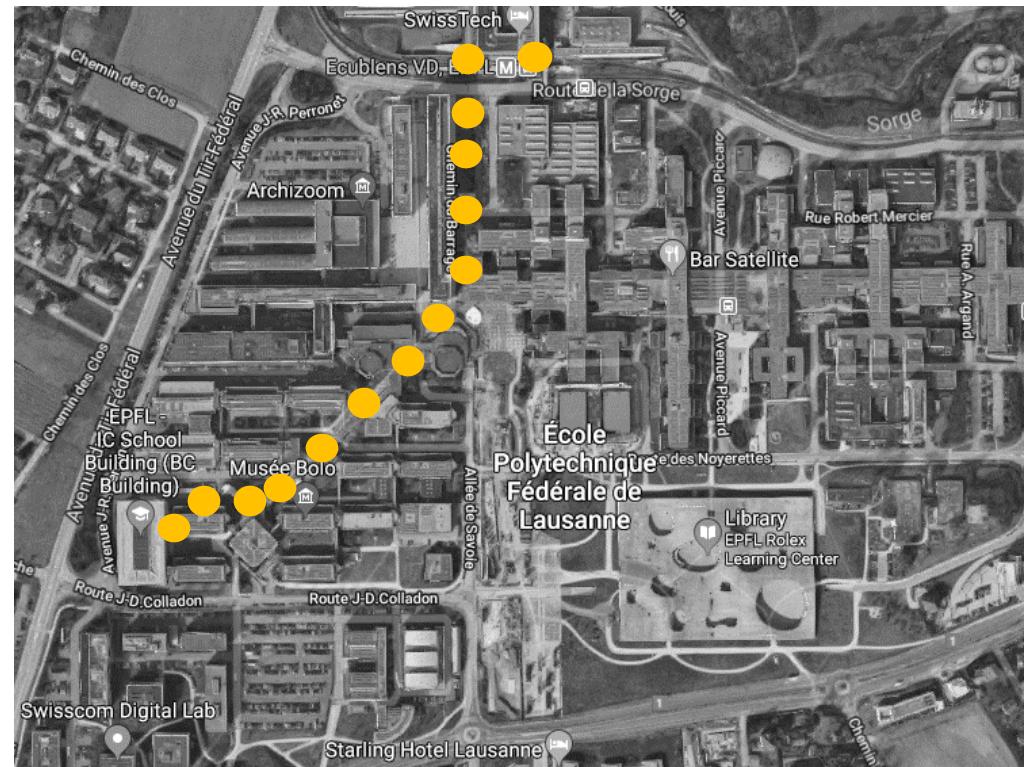
Likely many more...

**How to protect
location
privacy**

How to protect location privacy

4 main techniques:

- Perturbation
- Hiding
- Generalization
- Adding dummies



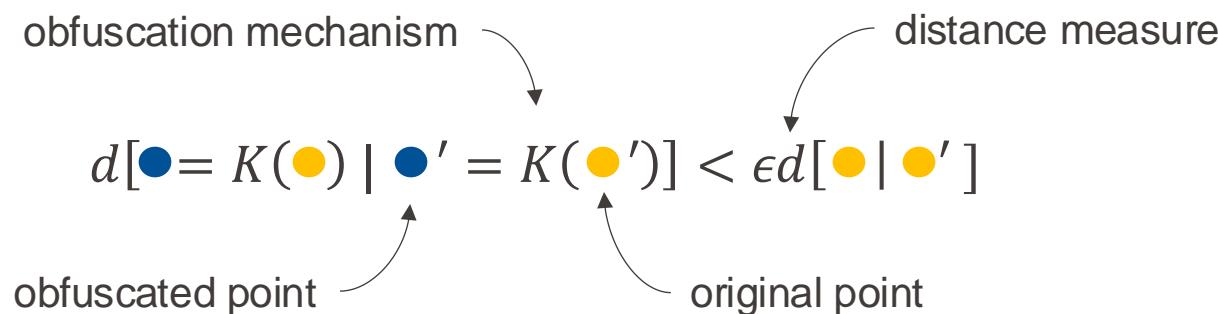
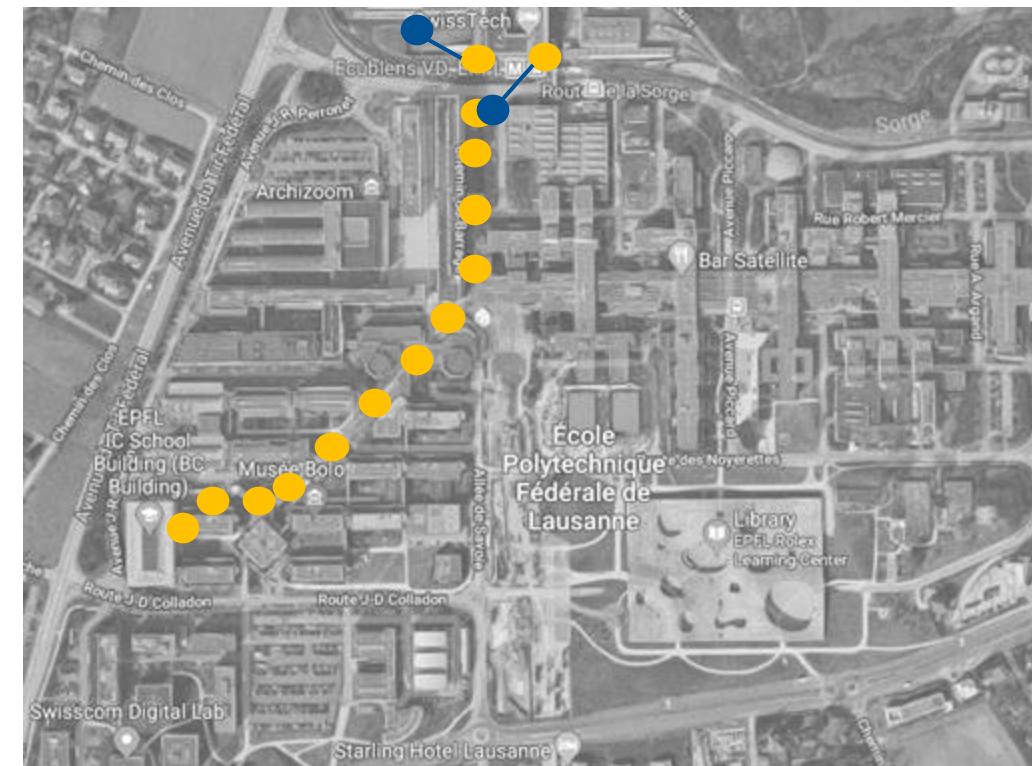
How to protect location privacy

Perturbation

Spatial Obfuscation: Perturbation of locations using noise [Duckham & Kulik 2005]

Geo-indistinguishability [Andres et al. 2013]

If two points are close, their obfuscated points are close



How to protect location privacy

Perturbation

Spatial Obj EPFL

Geo-indistir

If two points are

obfuscation me

$$d[\bullet] = K(\bullet)$$

obfuscated point

Differential Privacy

Formal Definition

A mechanism M is ϵ -differentially private if for all neighbouring databases D and D_{-r} which differ in only one individual

$$\mathbb{P}[M(D) = O] \leq e^\epsilon \cdot \mathbb{P}[M(D_{-r}) = O]$$

... and this must be true for all possible outputs O

27

How to protect location privacy

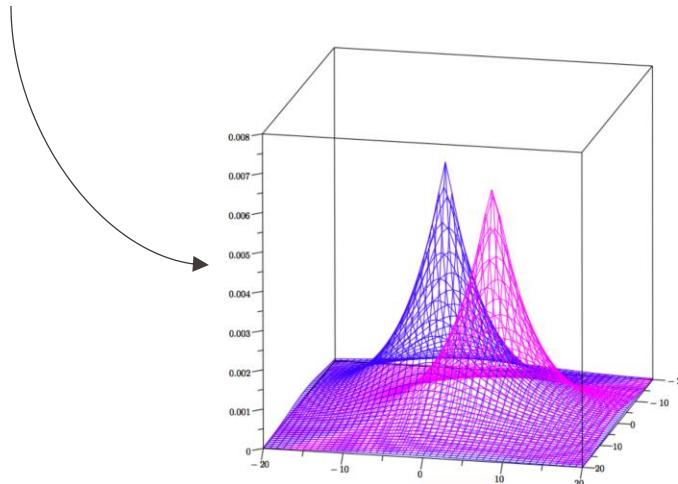
Perturbation

Spatial Obfuscation: Perturbation of locations using noise [Duckham & Kulik 2005]

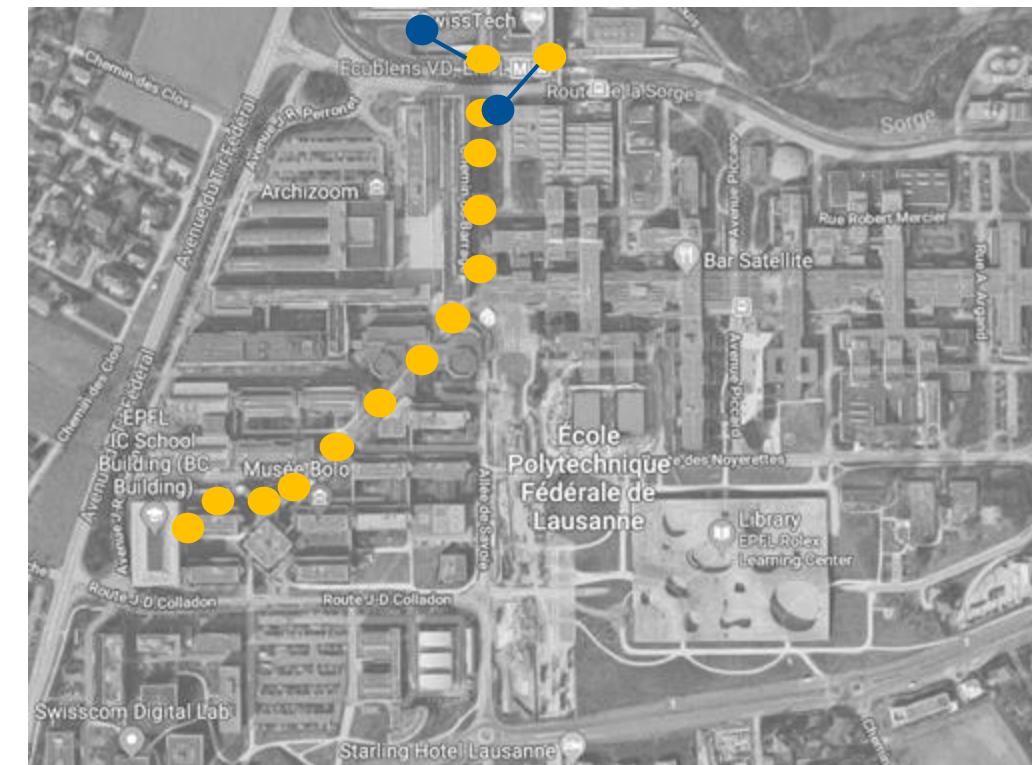
Geo-indistinguishability [Andres et al. 2013]

If two points are close, their obfuscated points are close

$$d[\bullet = K(\bullet) | \bullet' = K(\bullet')] < \epsilon d[\bullet | \bullet']$$



Add 2-dimensional
 ϵ -differential privacy noise



How to protect location privacy

Perturbation

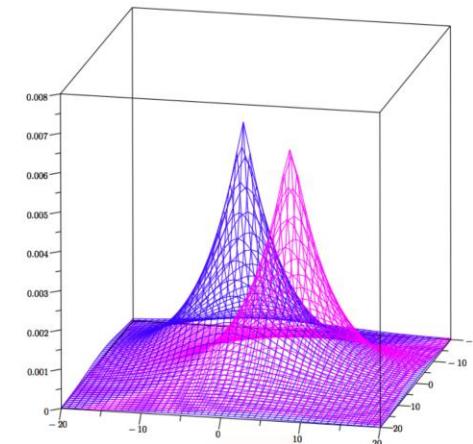
Spatial Obfuscation: Perturbation of locations using noise [Duckham & Kulik 2005]

Geo-indistinguishability [Andres et al. 2013]

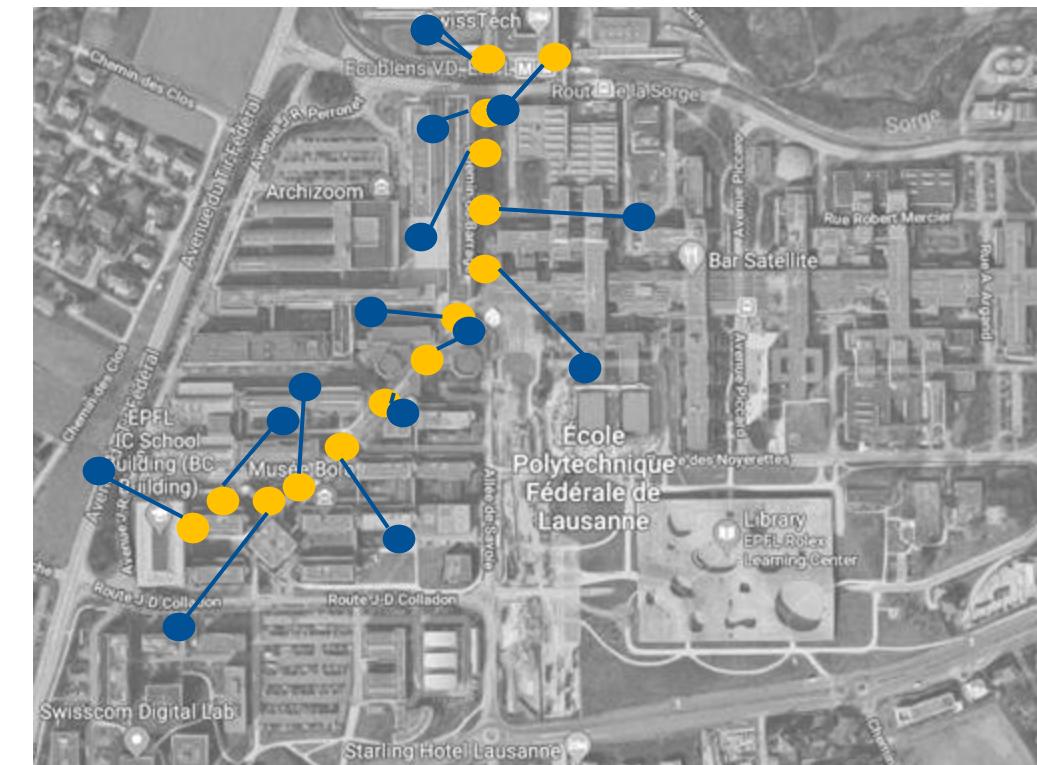
If two points are close, their obfuscated points are close

$$d[\bullet = K(\bullet) | \bullet' = K(\bullet')] < \epsilon d[\bullet | \bullet']$$

Significant privacy vs. utility trade-off
[Oya et al 2017b]



Add 2-dimensional
 ϵ -differential privacy noise



How to protect location privacy

Perturbation

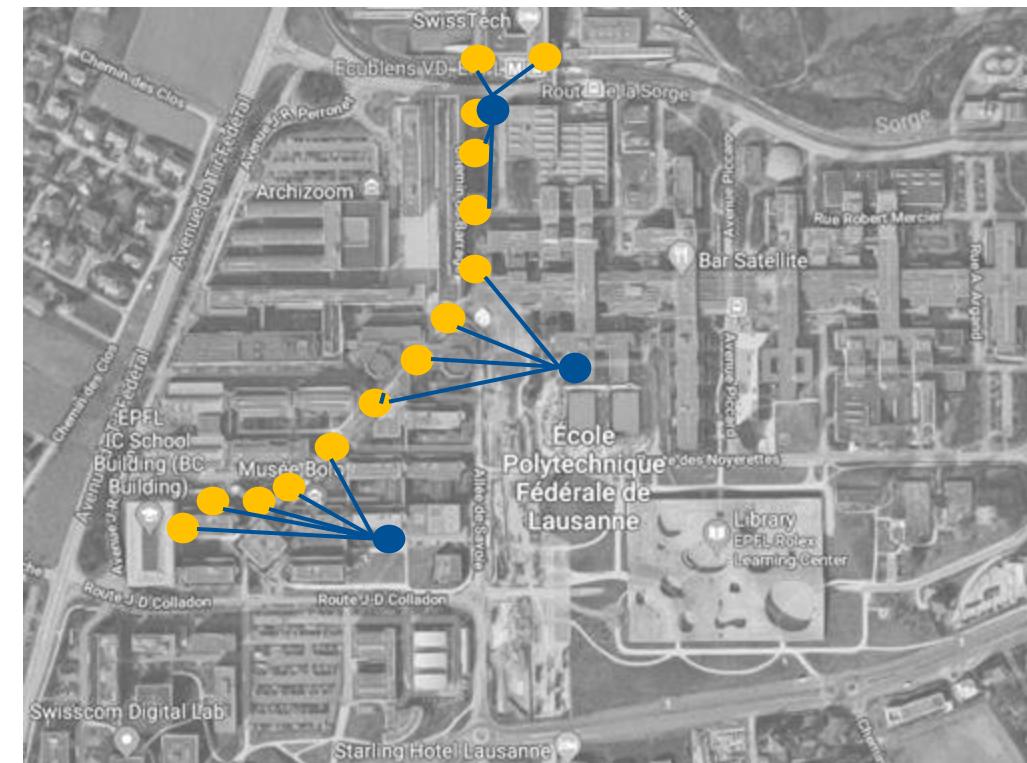
Spatial Obfuscation: Perturbation of locations using noise [Duckham & Kulik 2005]

Geo-indistinguishability [Andres et al. 2013]

As with differential privacy, we have
sequential composition: protection decreases
linearly with every sample → privacy degrades quickly

→ Release Geo-indistinguishability [Chatzikokolakis et al. 2014]

only draw noise when needed to keep utility
(i.e., when moving far from previous sample)

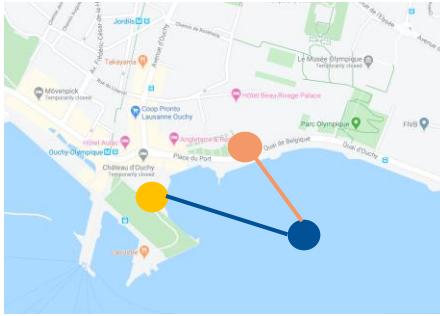


How to protect location privacy

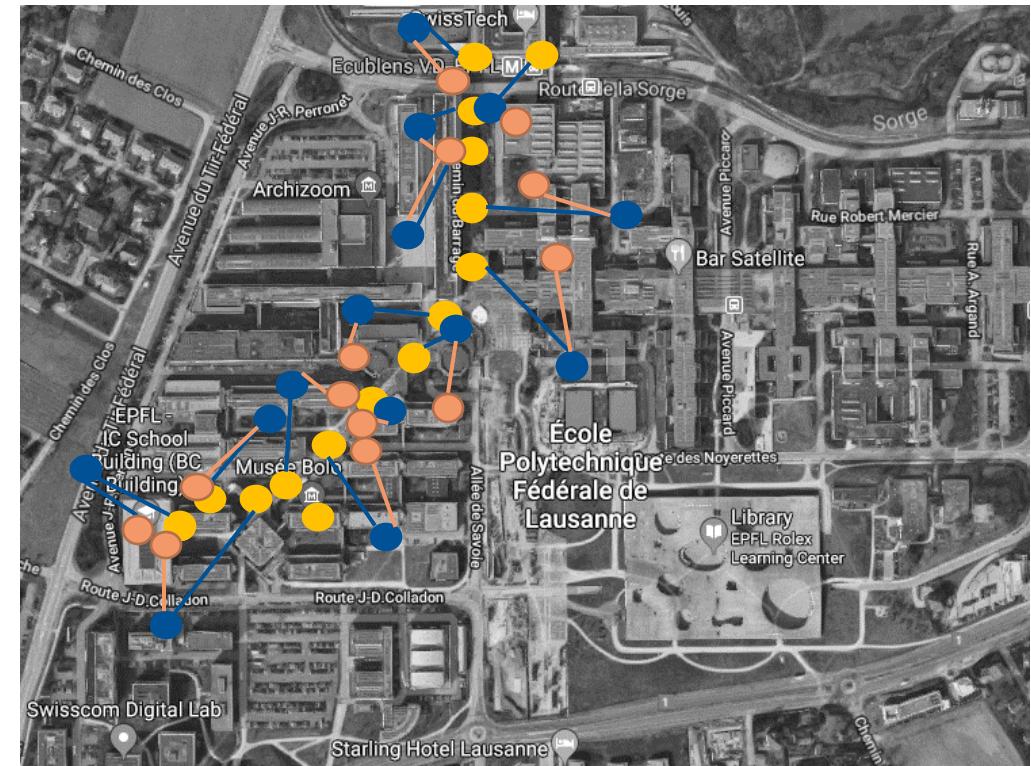
Perturbation

Spatial Obfuscation: Perturbation of locations using noise [Duckham & Kulik 2005]

- Geo-indistinguishability [Andres et al. 2013]
- Optimal remapping [Chatzikokolakis et al 2017] [Oya et al 2017]
Choose the best of the geo-indistinguishable options



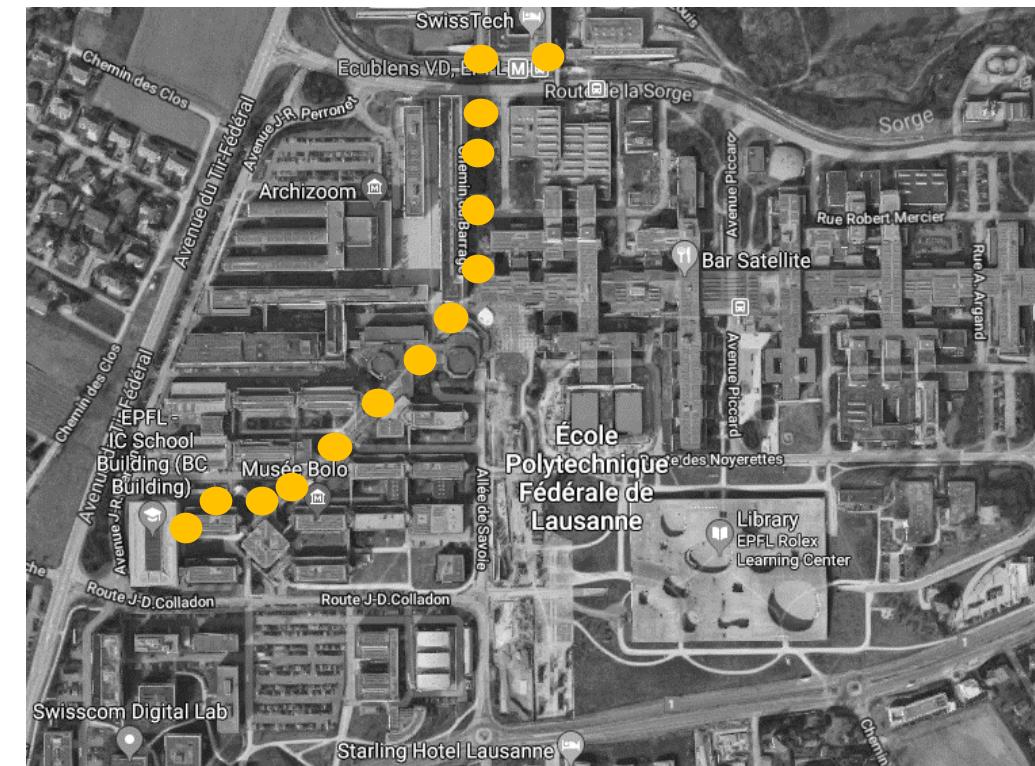
Requires a prior distribution to decide what's "best"!



How to protect location privacy

Hiding

Hiding: Do not report some locations [Huang 2006][Hoh 2007]

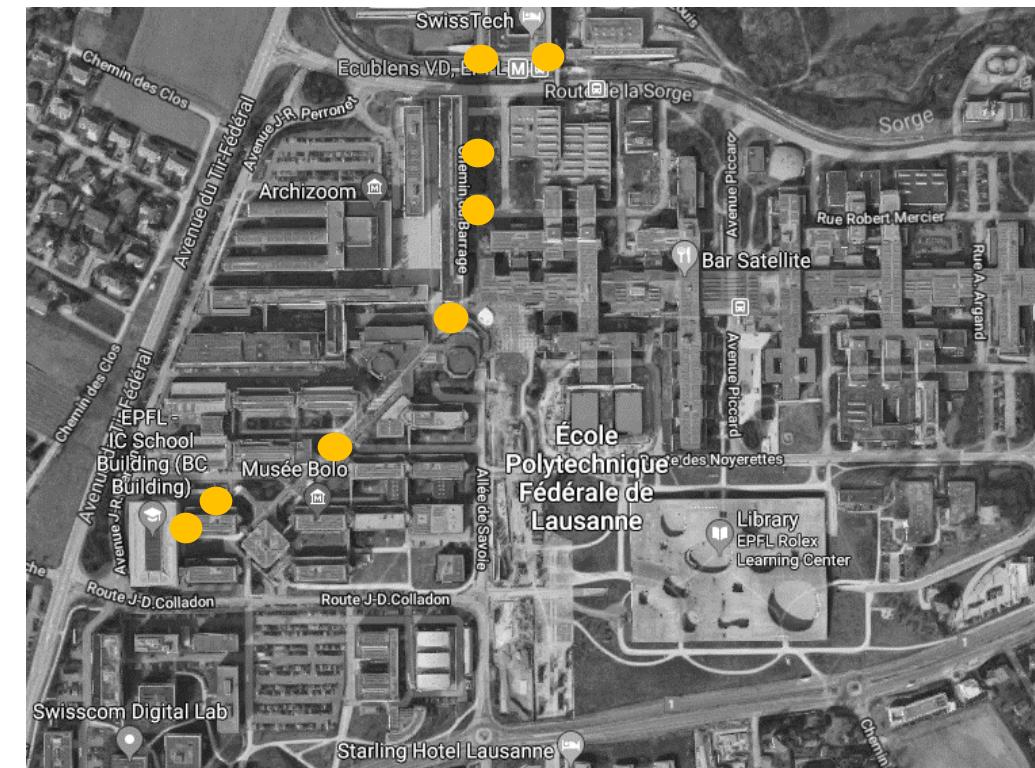


How to protect location privacy

Hiding

Hiding: Do not report some locations [Huang 2006][Hoh 2007]

Random Hiding: Reveal a percentage of the points chosen at random (e.g, 50%)

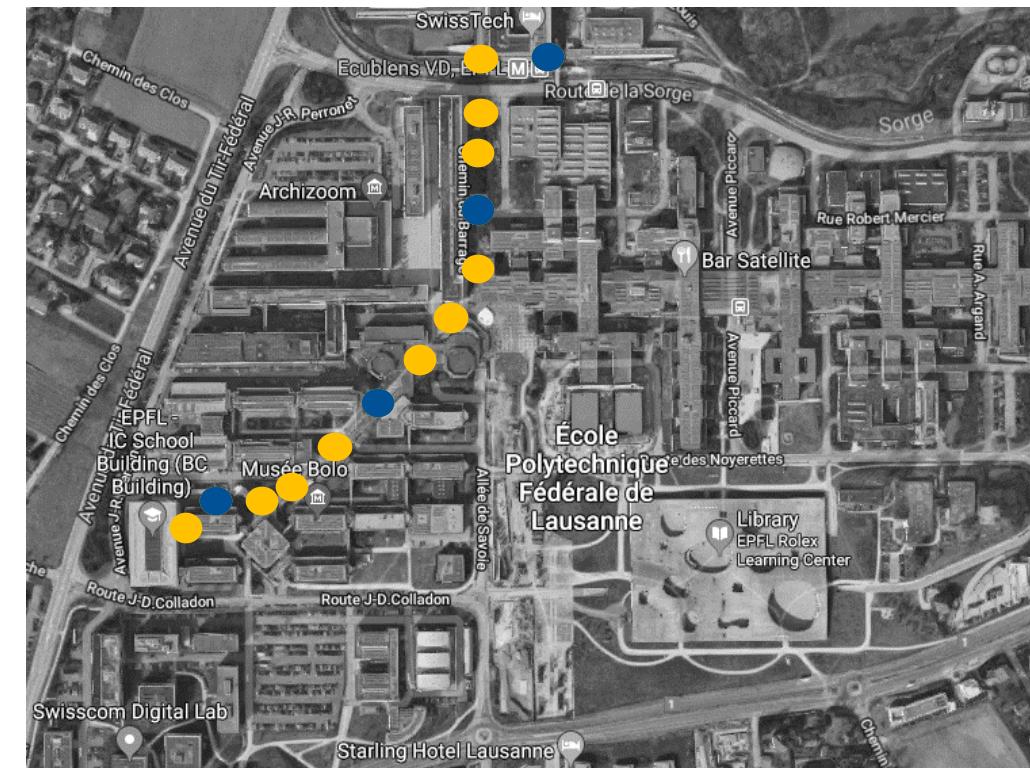


How to protect location privacy

Hiding

Hiding: Do not report some locations [Huang 2006][Hoh 2007]

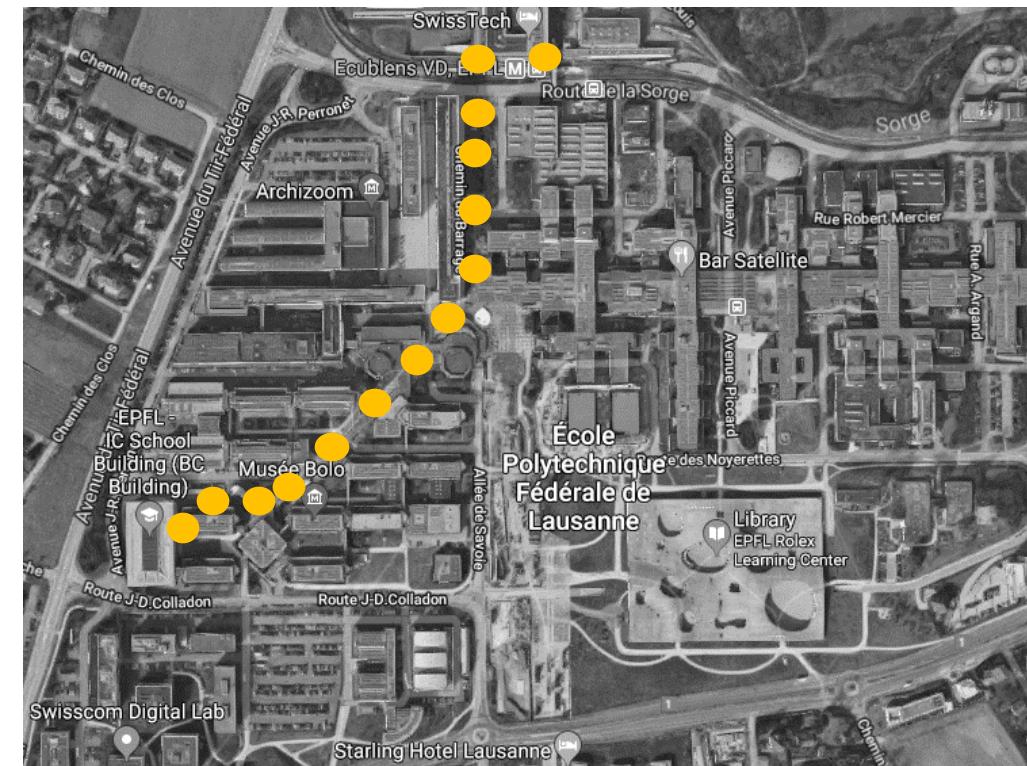
Release: Reveal points only when needed



How to protect location privacy

Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]

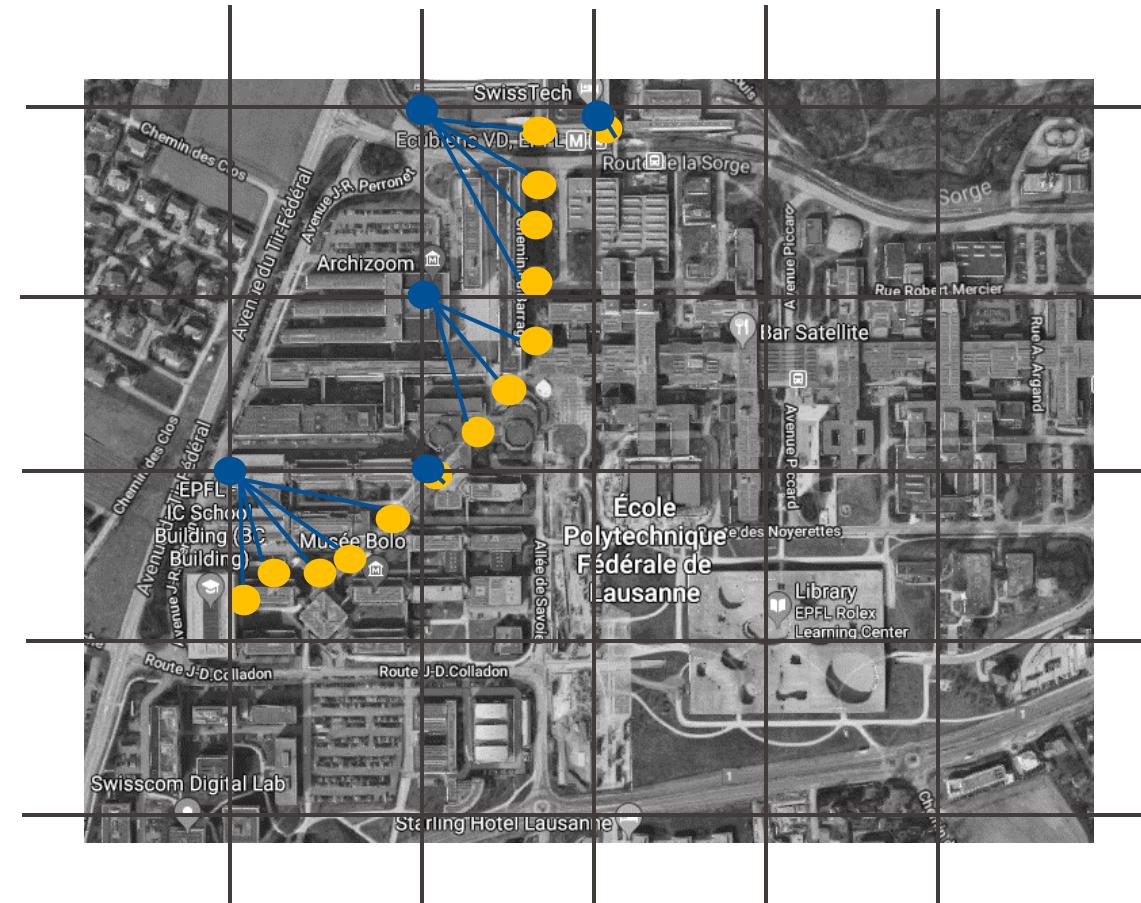


How to protect location privacy

Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]

Discretization: Map to grid points (Rounding - Floor) [Krumm 2009]



How to protect location privacy

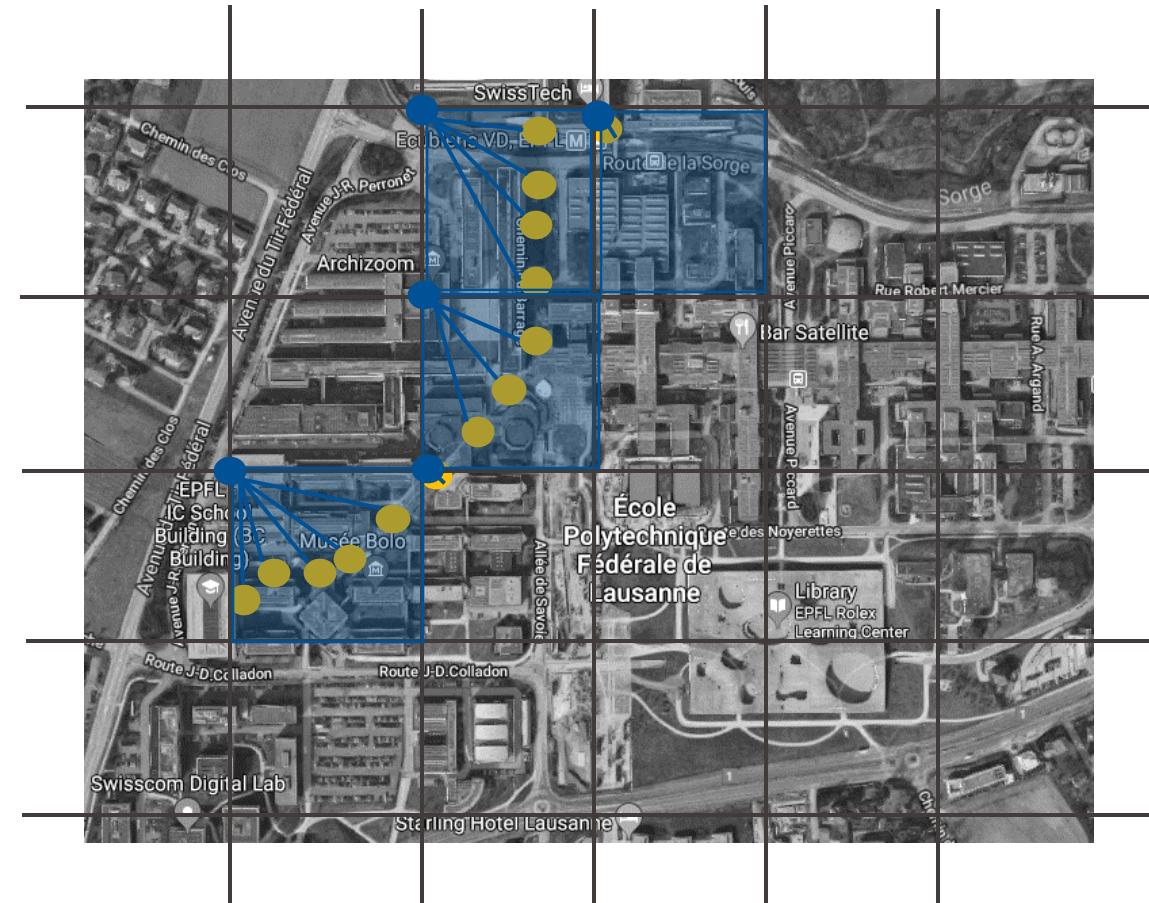
Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]

Discretization: Map to grid points (Rounding - Floor) [Krumm 2009]

Cloaking: Reveal a region

Fixed cloaks: always map to the same cloak



How to protect location privacy

Generalisation

Generalization: reduce the precision of the reported locations [Bamba et al 2008]

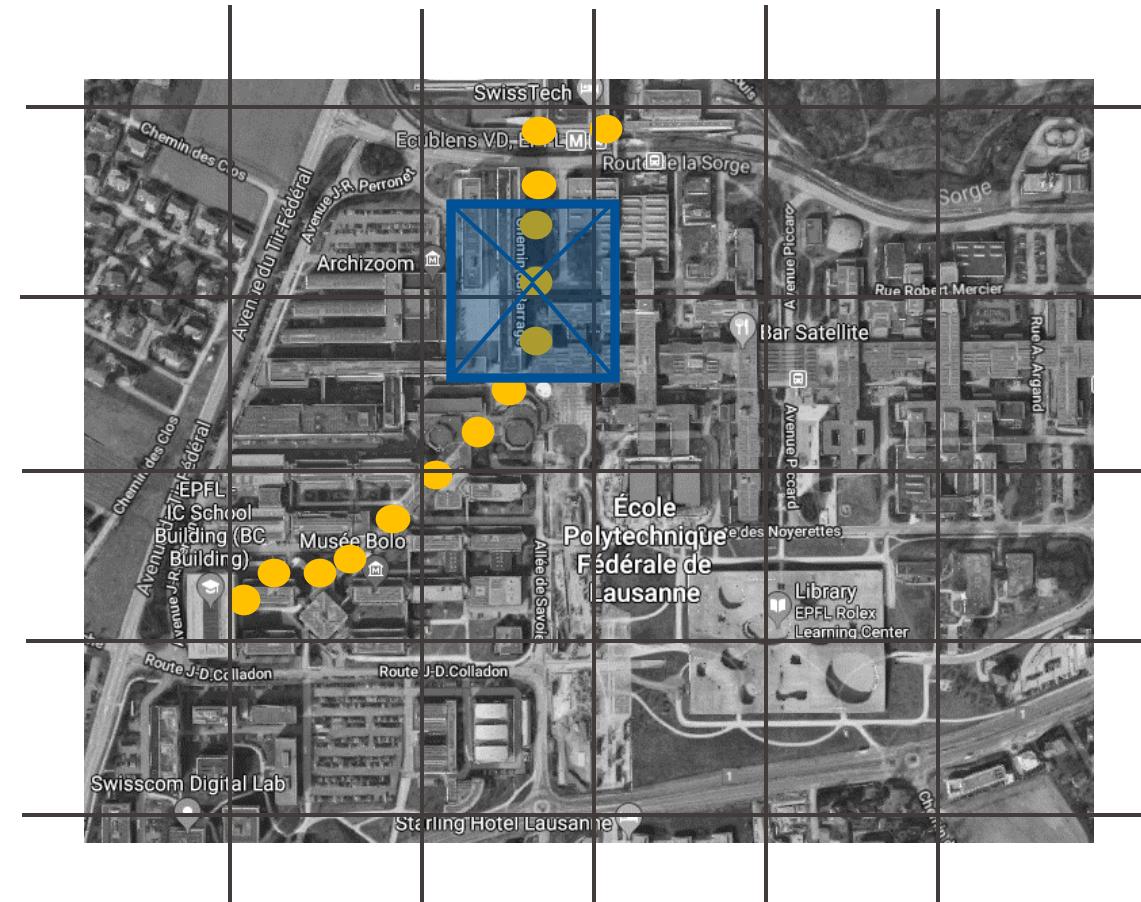
Discretization: Map to grid points (Rounding - Floor) [Krumm 2009]

Cloaking: Reveal a region

Fixed cloaks: always map to the same cloak

Location-dependent cloaks (centered on location)

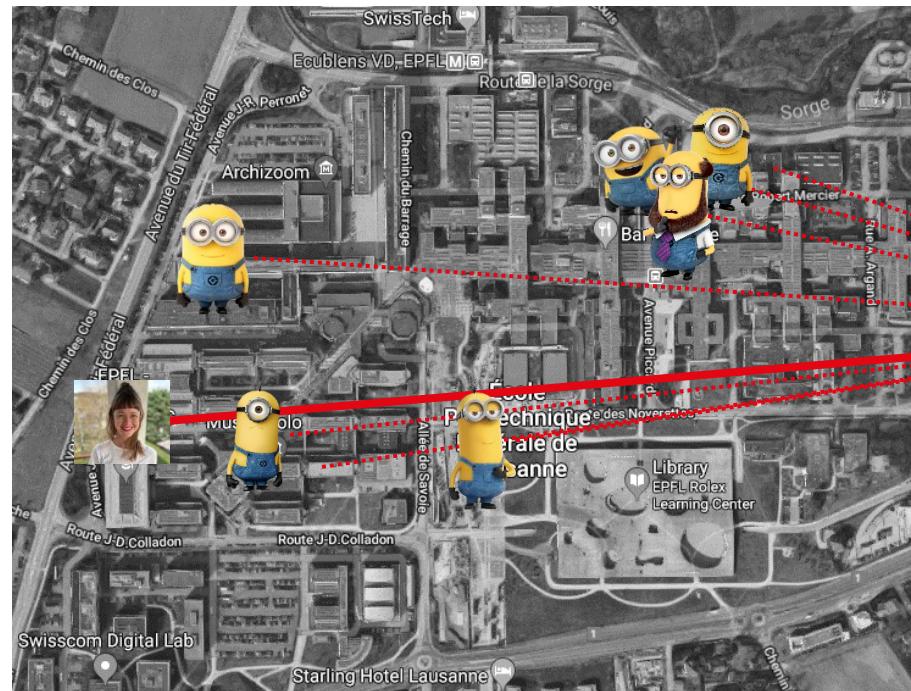
k-anonymity based



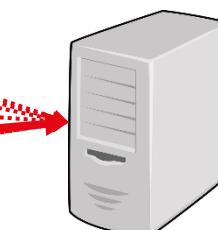
How to protect location privacy

A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



(x,y,Q) where (x,y) is the location and Q a query



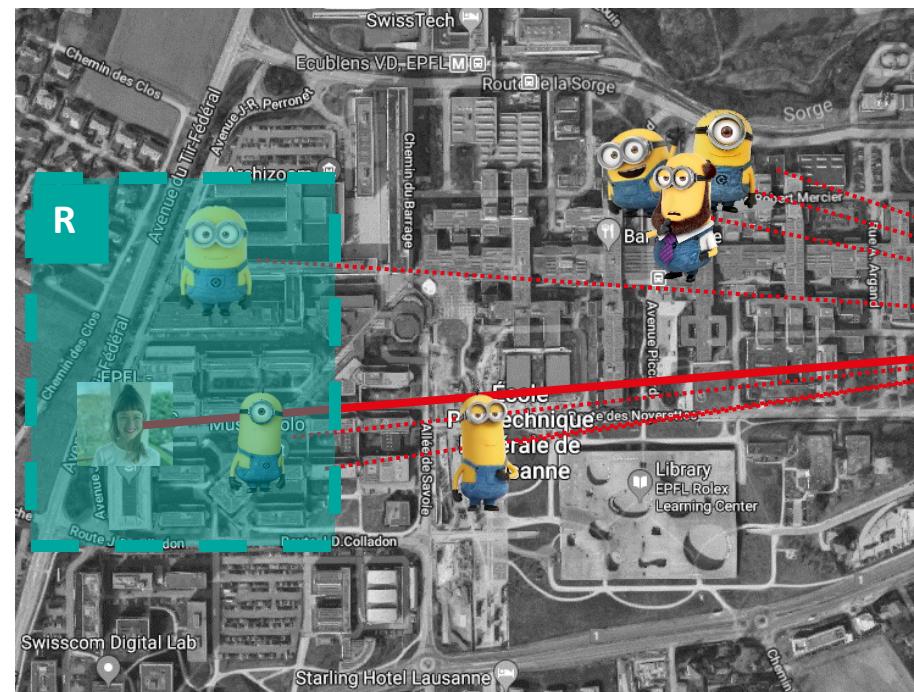
Anonymization
service
 $k=3$

Privacy parameter

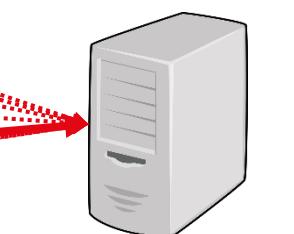
How to protect location privacy

A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



The anonymization service
computes the cloak R

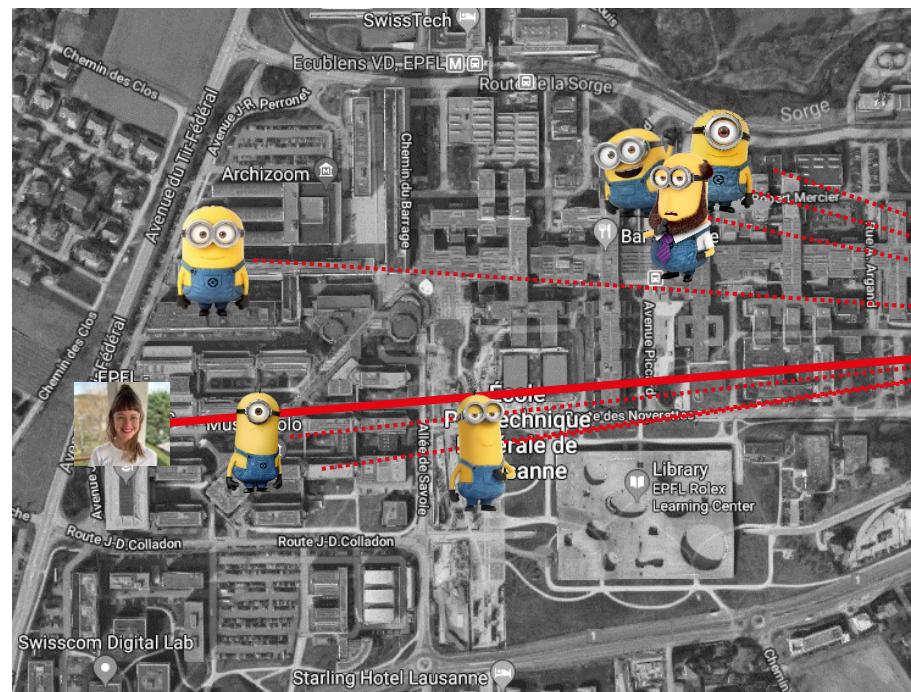


Anonymization
service
 $k=3$

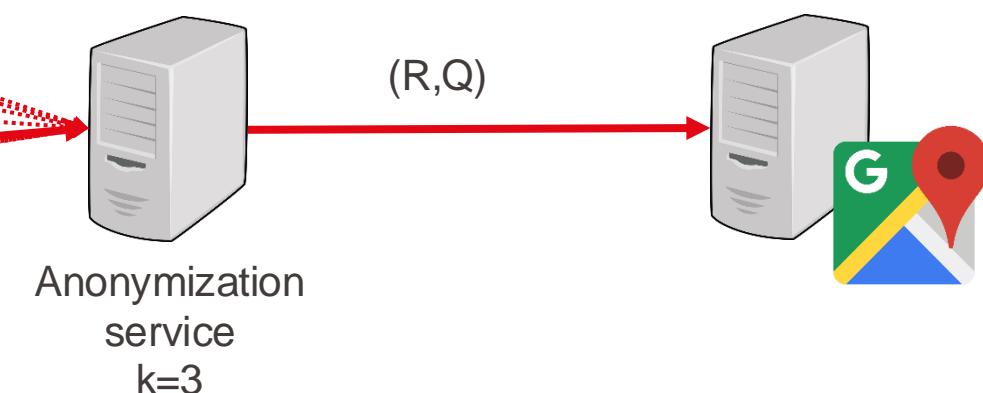
How to protect location privacy

A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



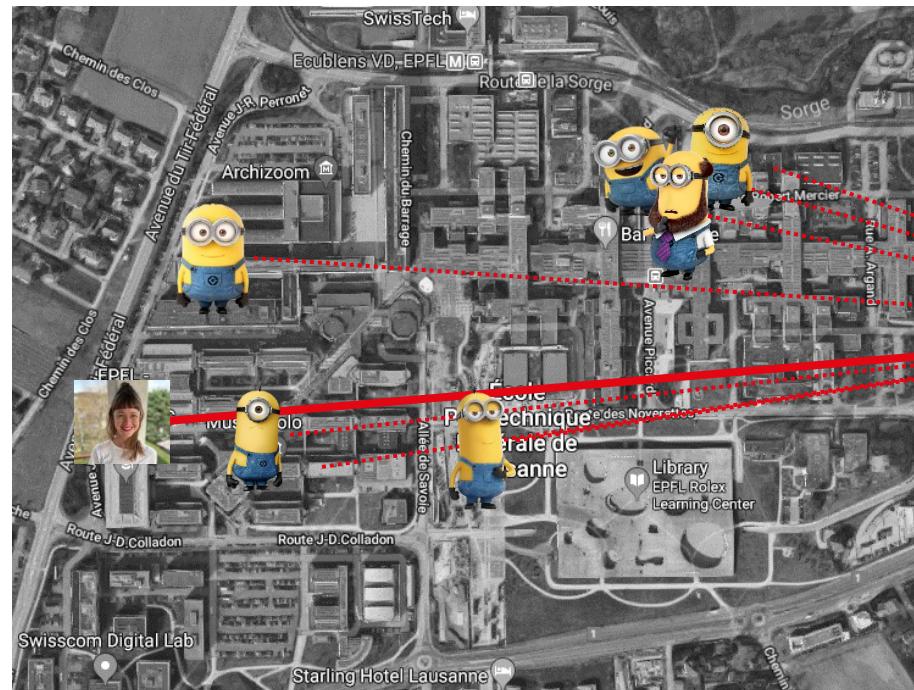
And sends the cloak and query to the location service



How to protect location privacy

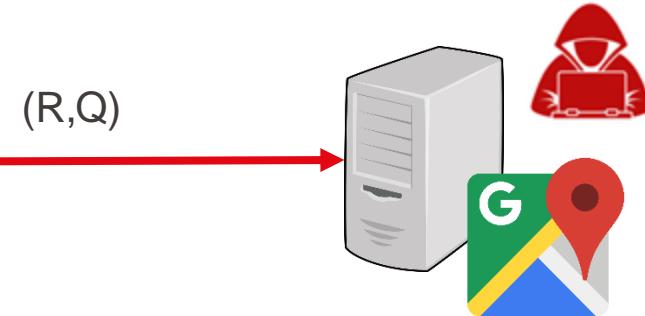
A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



Anonymization
service
 $k=3$

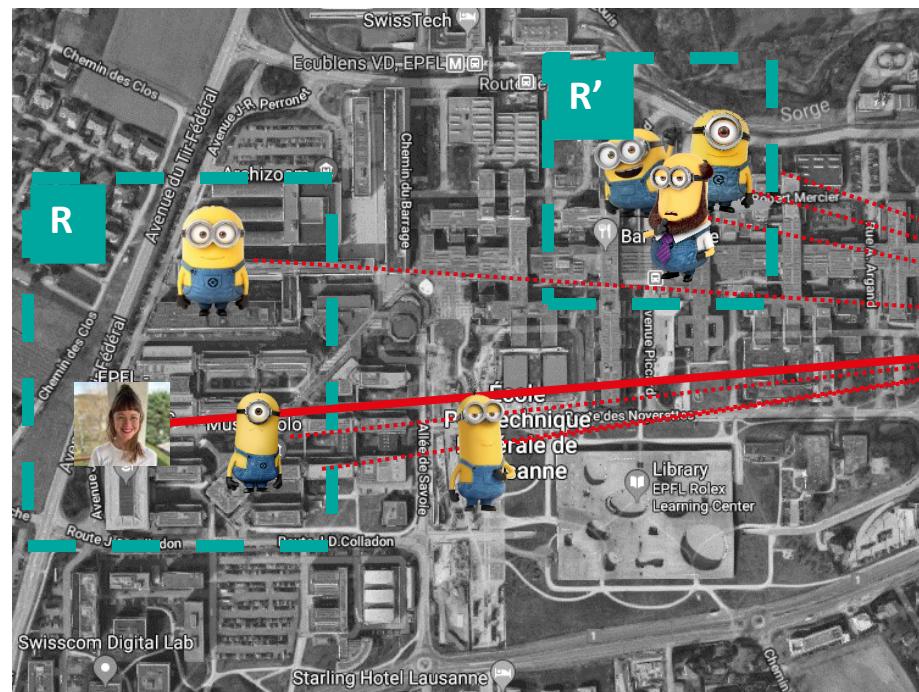
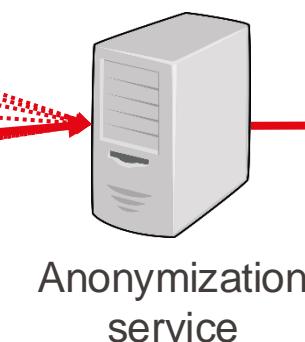
Goal: Location privacy towards
the location service provider



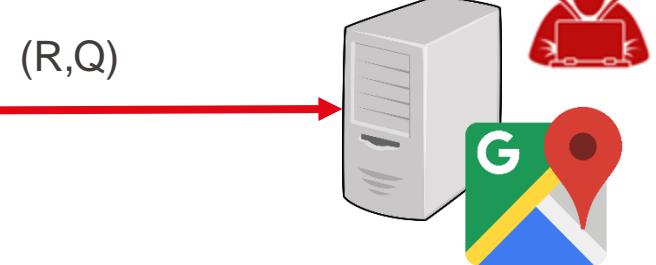
How to protect location privacy

A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



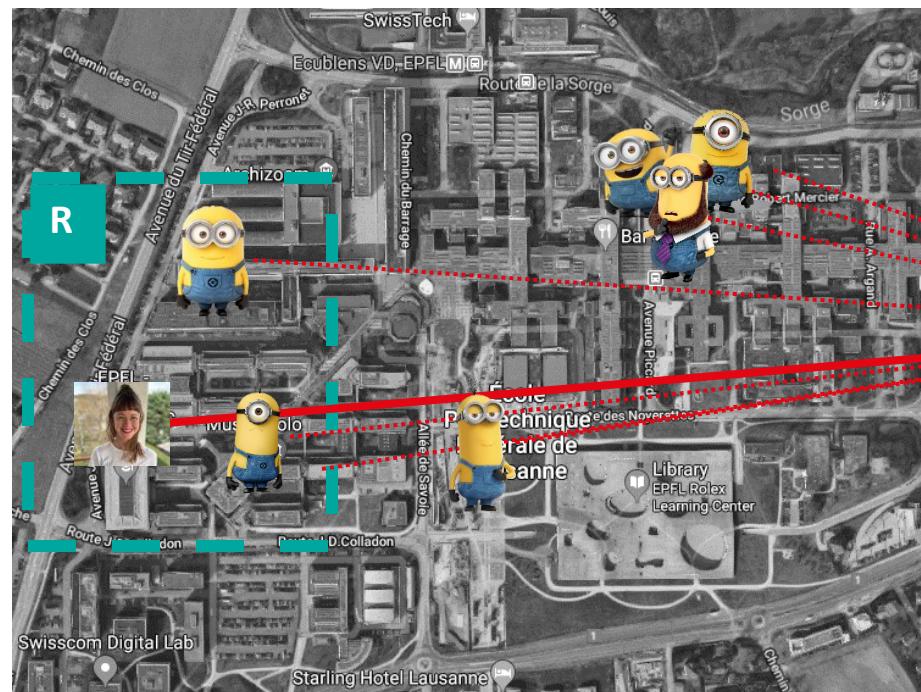
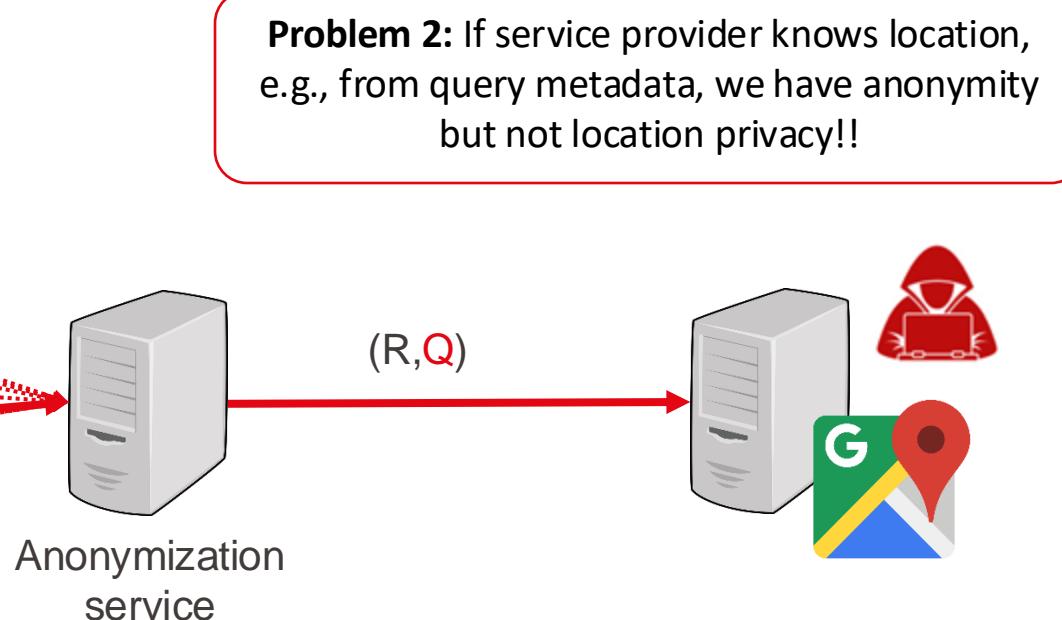
Problem 1: $k \neq$ location privacy
 R vs. R' ($k=3$) have different size



How to protect location privacy

A cautionary note on k-anonymity cloaking

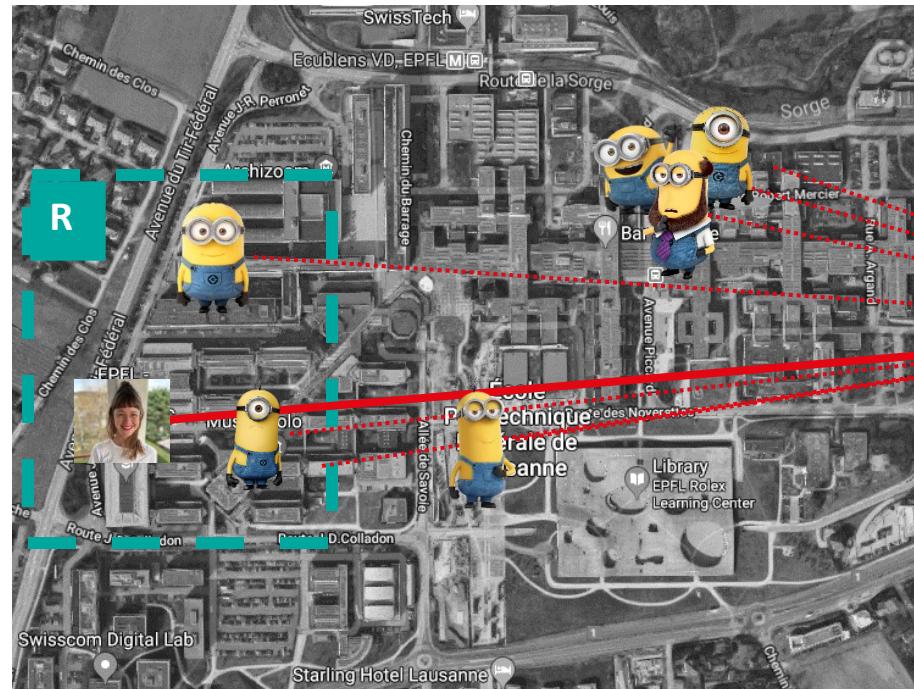
[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



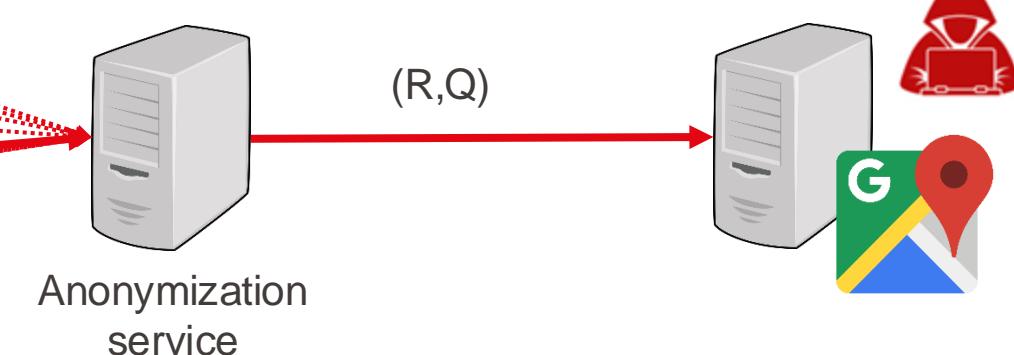
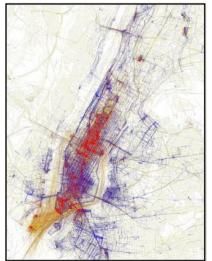
How to protect location privacy

A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



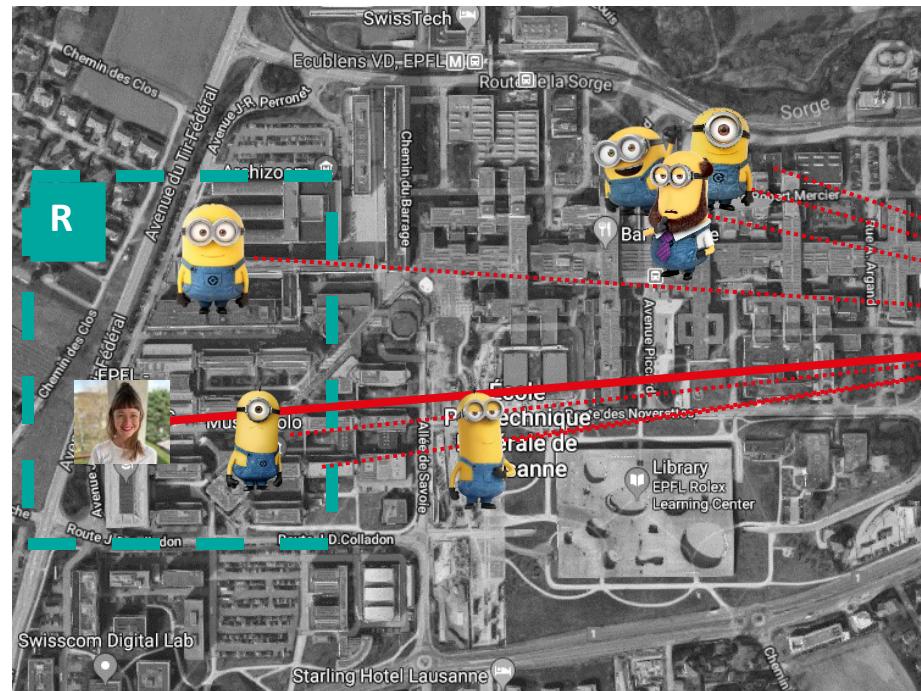
Problem 3: If service provider knows statistical information, e.g., public data, location privacy does not depend on people's actual location!!



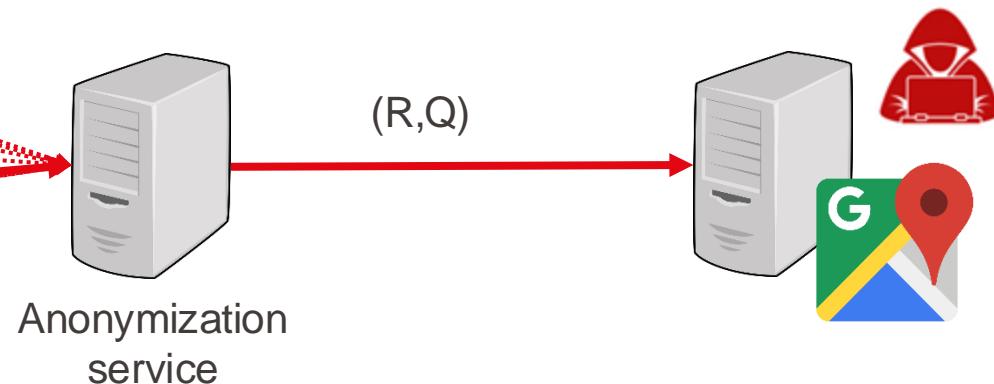
How to protect location privacy

A cautionary note on k-anonymity cloaking

[Gruteser & Grunwald 2003] and a long, long, long list of follow-up works



Problem 4: If the service provider has no additional knowledge, Location privacy and anonymity can be achieved without cloaks!!



Cloaking based on k-anonymity is a useful tool
for anonymity
not location privacy

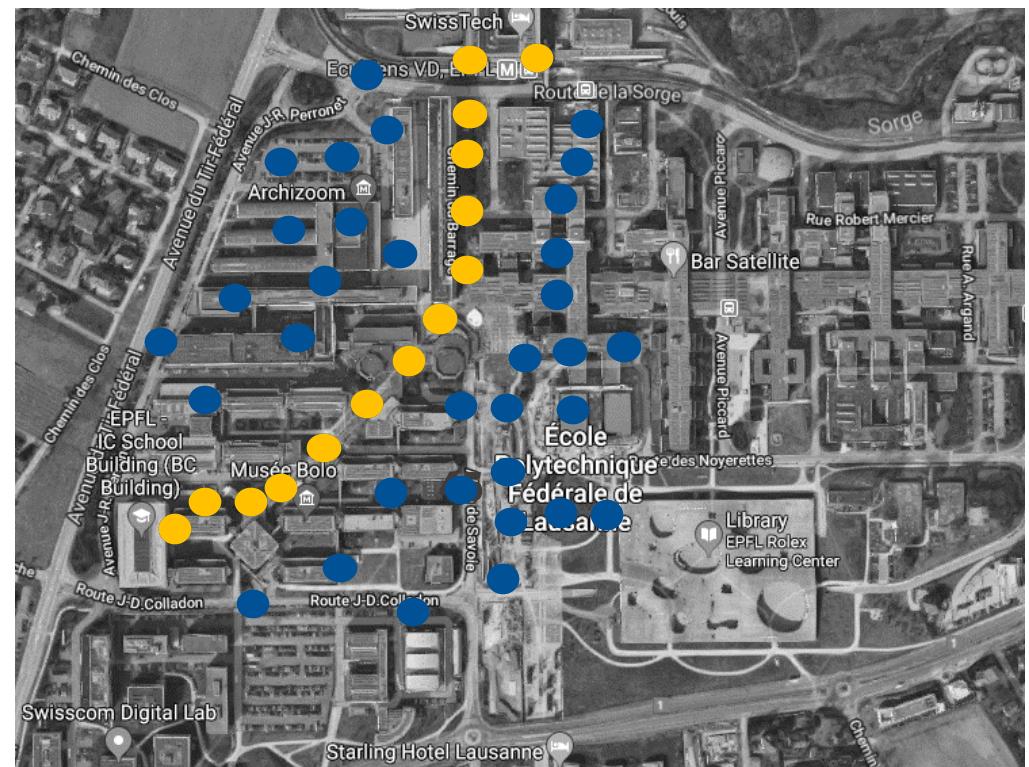
How to protect location privacy

Adding dummies

Dummy Locations: add decoy locations [Meyerovitz & Choudhury 2009]

Difficult to create plausible dummies

[Chow & Golle 2009]



**How to
measure
location
privacy**

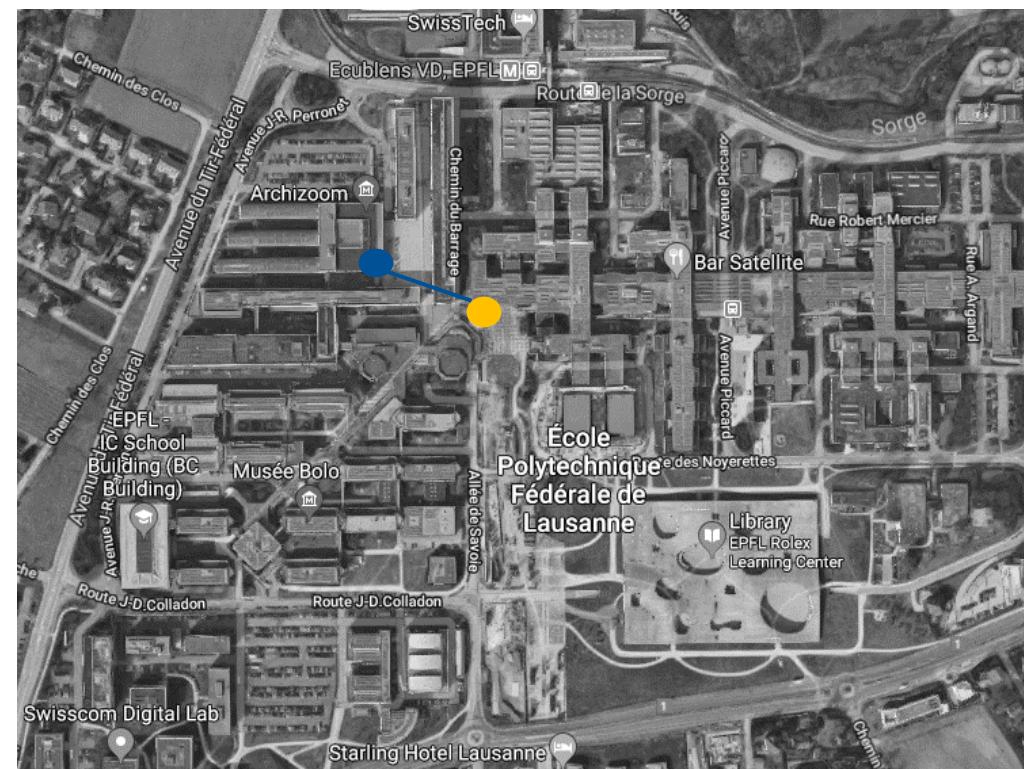
How can we measure location privacy?

Strategic adversary

Strategic adversary

- Knows the defense mechanism
 $\bullet = K(\bullet)$
- Given released location, estimates most likely real location

Computing this probability is hard for location traces: too many plausible options.
→ Use sampling methods (MCMC)



How can we measure location privacy?

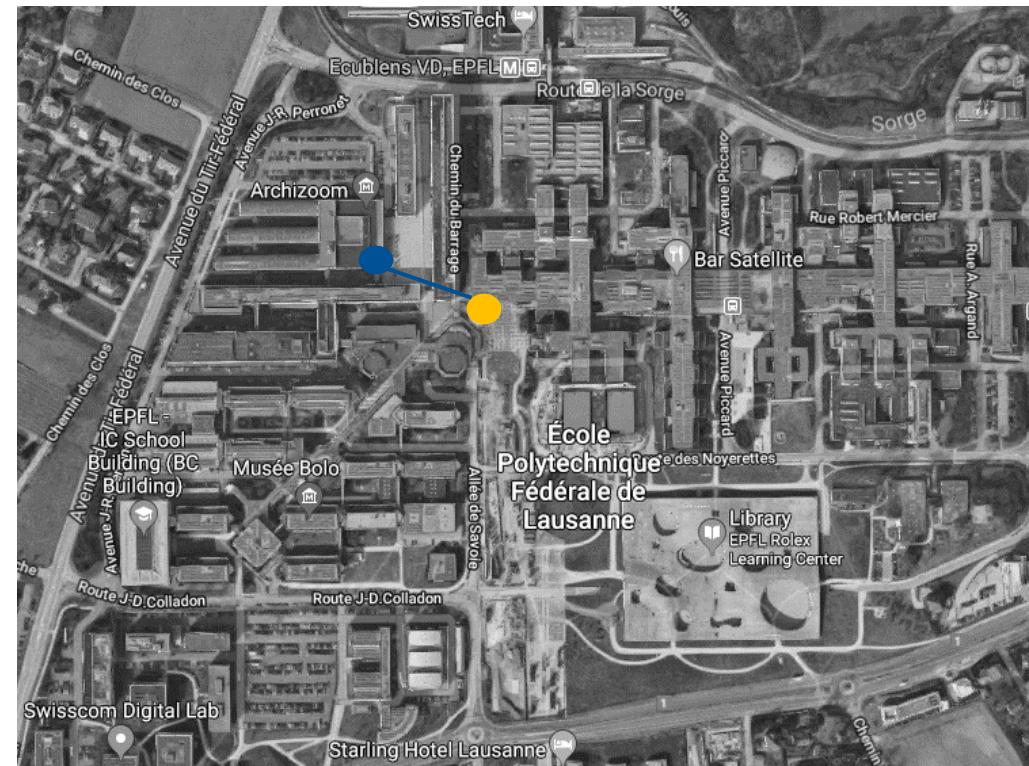
Privacy error

Privacy error

Accuracy: how much variance in estimation
Confidence interval

Correctness: how close to reality
Adversary's error [Shokri et al 2011]

Certainty: how sure of the guess
Entropy [Oya et al 2017]



How can we measure location privacy?

Privacy error

Real location

Inferred location

True positive

False positive

Privacy is achieved if the adversary has

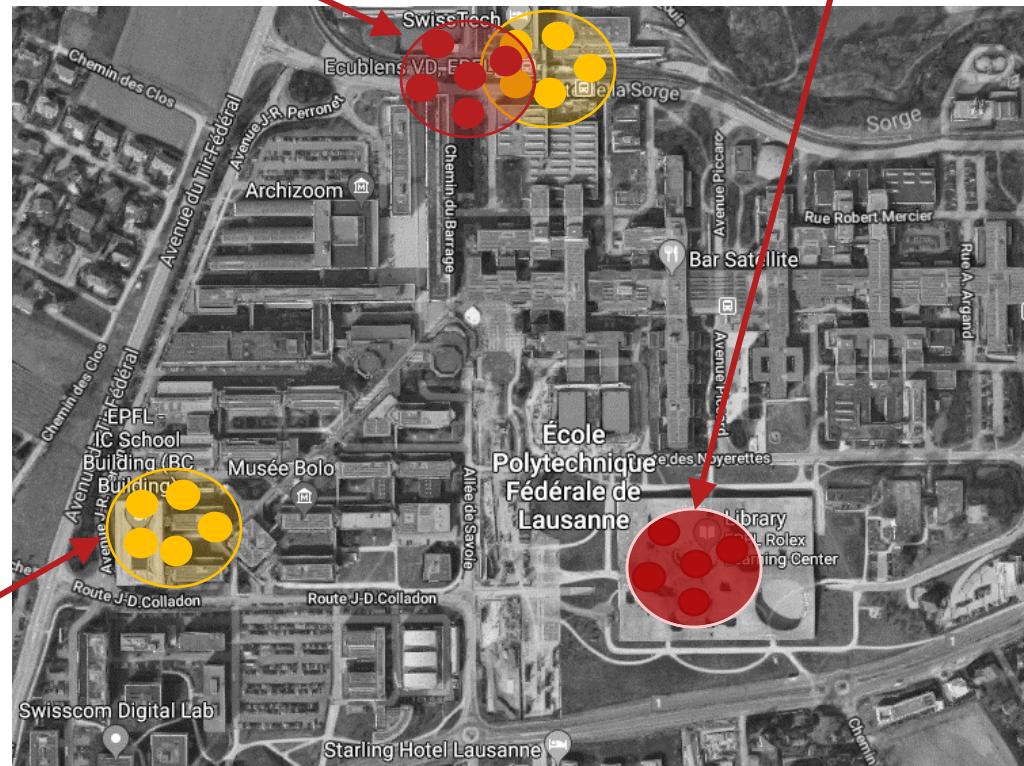
Low precision: many false inferred locations

$$Precision = \frac{TP}{TP+FP}$$

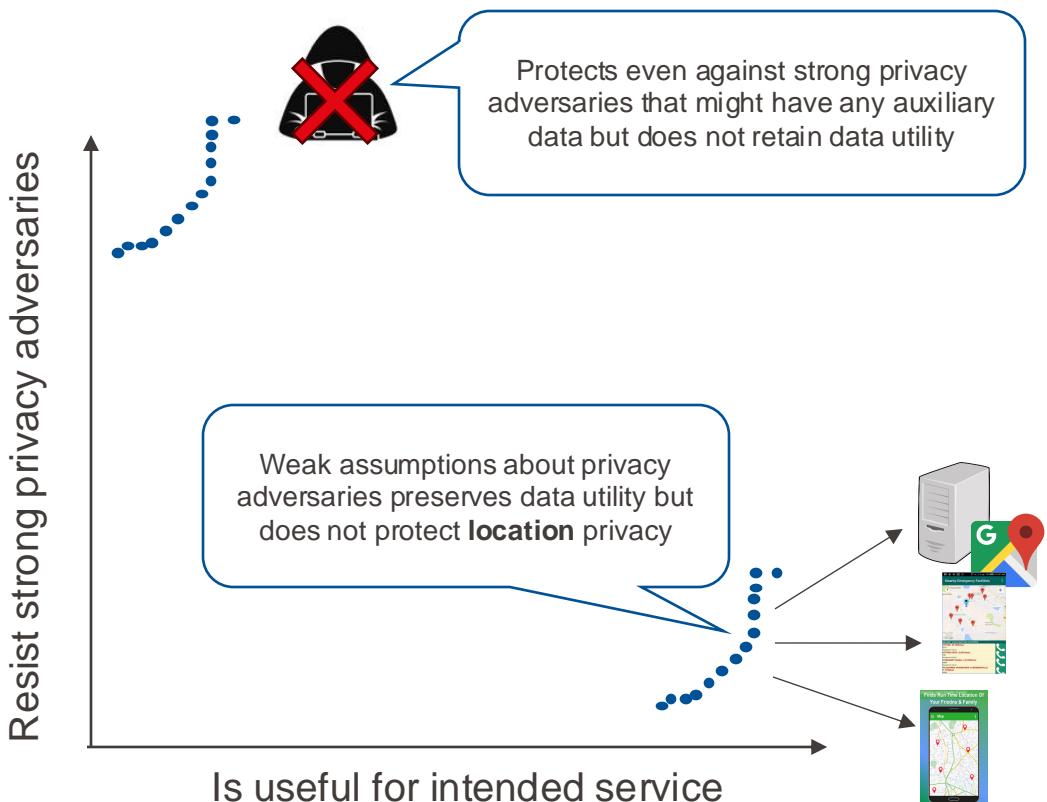
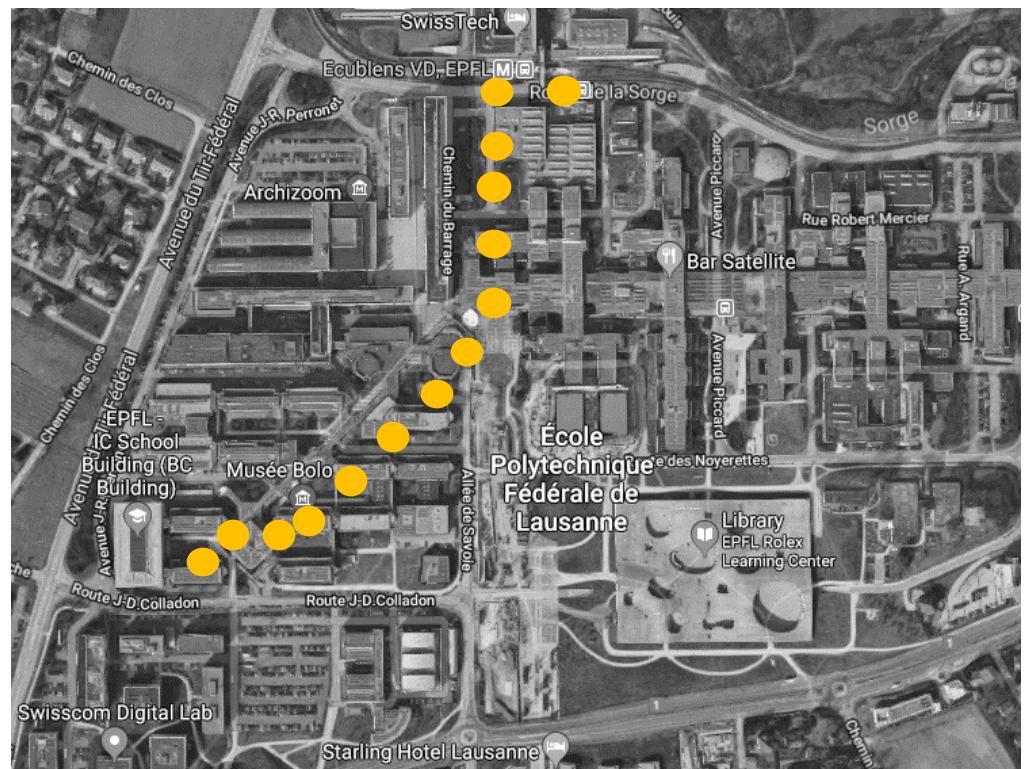
Low recall: misses many real locations

$$Recall = \frac{TP}{TP+FN}$$

False negative



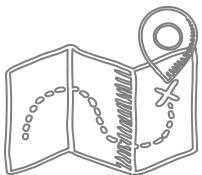
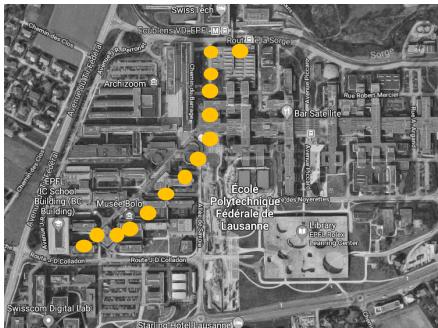
If we use these measures to assess the protections...



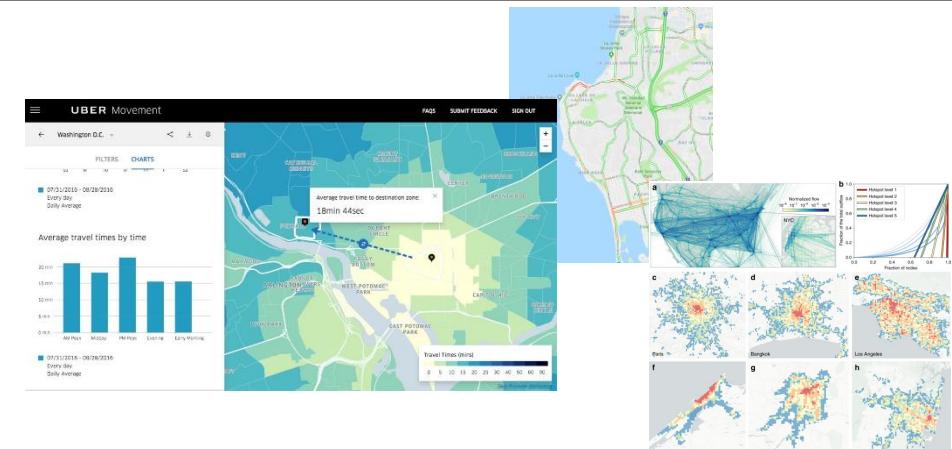
What about
aggregates?

What about hiding in the crowd?

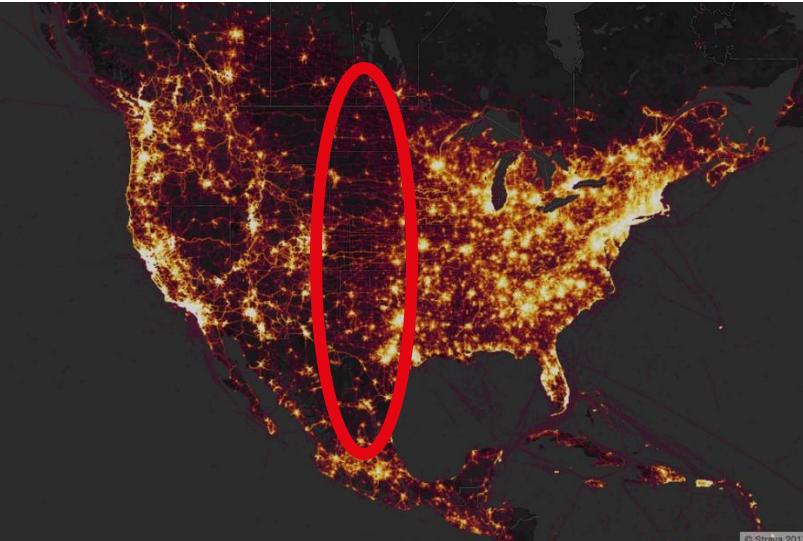
Aggregate statistics



So would aggregates be secure?



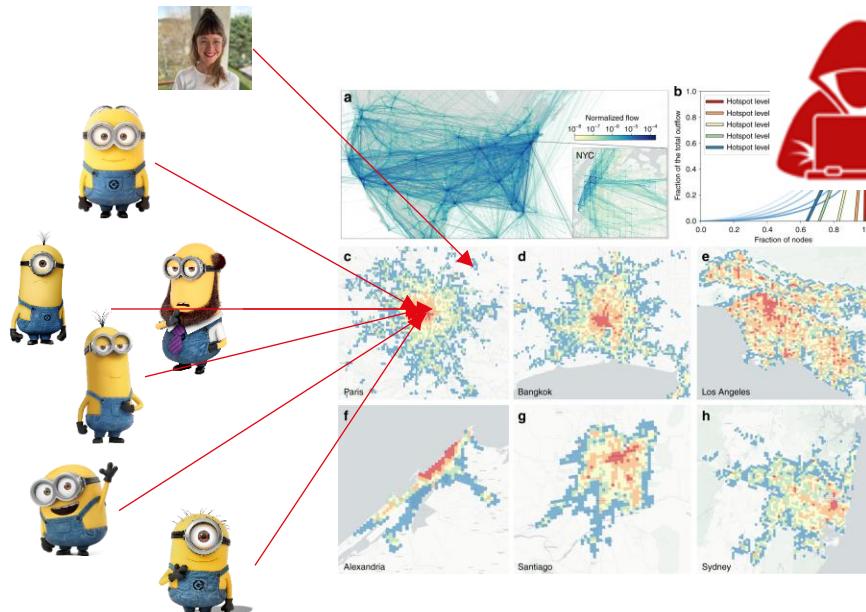
Even aggregate location is sensitive...



- <https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/>

What can be inferred from aggregate location data?

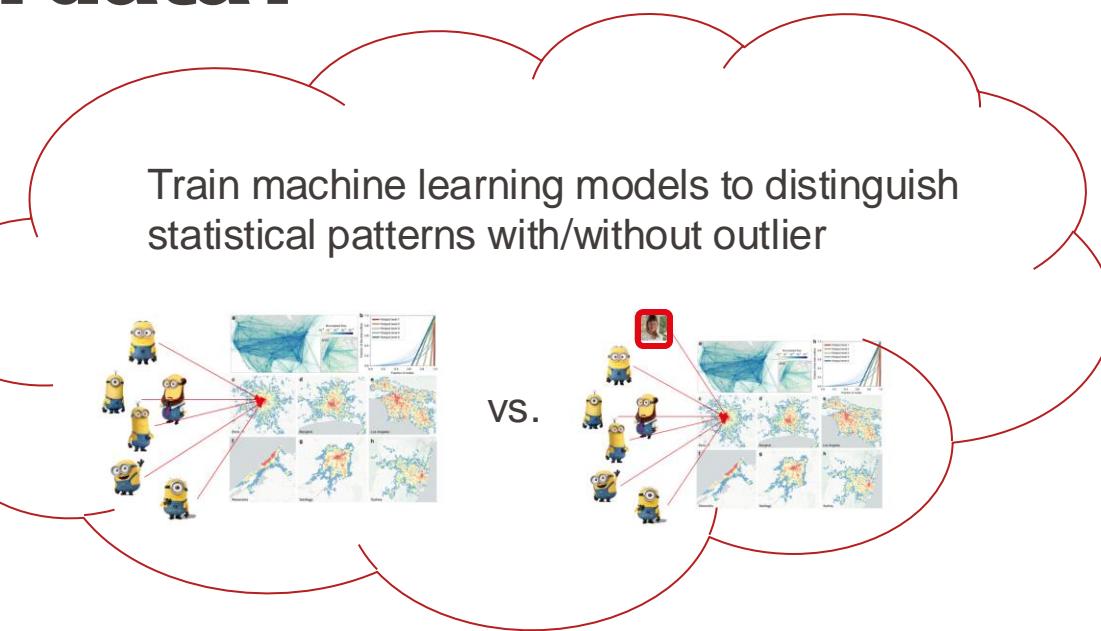
Outliers create “particular” statistics



Aggregates reflect statistics of the population

Train machine learning models to distinguish statistical patterns with/without outlier

vs.

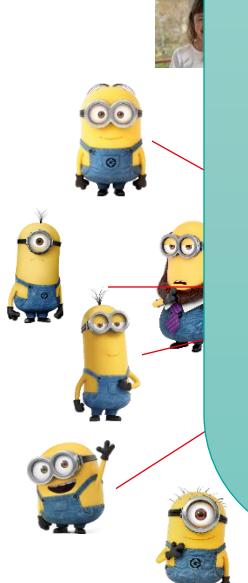


Once membership is known, aggregates enable further inferences

What can be inferred from aggregate location data?

And this is very hard to defend against while keeping utility

Outliers create



Knock Knock, Who's There? Membership Inference on Aggregate Location Data*

Apostoles Pyrgelis
University College London
apostolos.pyrgelis.14@ucl.ac.uk

Carmela Troncoso
IMDEA Software Institute
carmela.troncoso@imdea.org

Emiliano De Cristofaro
University College London
e.dchristofaro@ucl.ac.uk

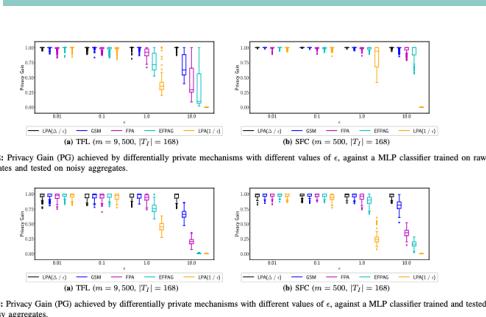


Fig. 12: Privacy Gain (PG) achieved by differentially private mechanisms with different values of ϵ , against a MLP classifier trained on raw aggregates and tested on noisy aggregates.

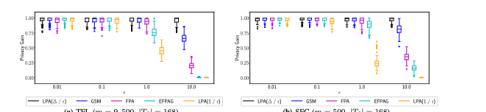


Fig. 13: Privacy Gain (PG) achieved by differentially private mechanisms with different values of ϵ , against a MLP classifier trained and tested on noisy aggregates.

Aggregates reflect statistics of the population

Location is Identity
you are where you are

ish

er inferences

Take
aways

Take aways

- Location data contains a lot of sensitive information about us
 - About our health status, our religious beliefs, our financial situation, whom we interact with
- Simple inference attacks can extract this information
- Hard to protect location data against inference attacks while preserving its utility
 - Techniques like perturbation, generalisation, dummies, hiding all come with stringent privacy utility trade-offs
 - Aggregation is a weak privacy-preserving mechanism: **membership attacks** are feasible

→ To design effective defenses, we need to adjust them to the adversarial model

References

[Andres et al 2013] M. E. Andres, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi, “Geo-indistinguishability: Differential privacy for location-based systems,” in CCS, 2013.

[Ashbrook & Starner 2003] D. Ashbrook and T. Starner. Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing, 7(5):275–286, 2003.

[Backes et al 2017] M. Backes, M. Humbert, J. Pang, and Y. Zhang, “walk2friends: Inferring social links from mobility profiles,” in CCS, 2017.

[Bamba et al 2008] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting anonymous location queries in mobile environments with PrivacyGrid,” in WWW, 2008.

[Bilogrevic et al 2015] Bilogrevic, I., Huguenin, K., Mihaila, S., Shokri, R., & Hubaux, J. P. Predicting users' motivations behind location check-ins and utility implications of privacy protection mechanisms. In NDSS 2015.

[Bindschaedler & Shokri 2016] V. Bindschaedler and R. Shokri, “Synthesizing plausible privacy-preserving location traces,” in IEEE S&P, 2016.

[Chatzikokolakis et al 2014] K. Chatzikokolakis, C. Palamidessi, and M. Stronati, “A predictive differentially-private mechanism for mobility traces,” in PETS, 2014.

[Chatzikokolakis et al 2017] K. Chatzikokolakis, E. Elsalamouny, and C. Palamidessi, “Efficient utility improvement for location privacy,” PETS, 2017.

[Cho et al 2100] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: User movement in location-based social networks. In KDD, 2011.

[Chow & Golle 2009] Chow, R., & Golle, P. Faking contextual data for fun, profit, and privacy. In WPES 2009.

[Crandall et al 2010] D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher, and J. Kleinberg, “Inferring social ties from geographic coincidences,” PNATL ACAD SCI USA, 2010.

References

[De Montjoye et al 2013] De Montjoye, Y. A., Hidalgo, C. A., Verleysen, M., & Blondel, V. D. Unique in the crowd: The privacy bounds of human mobility. *Scientific reports*, 3, 1376. 2013.

[De Montjoye et al 2015] De Montjoye, Y. A., Radaelli, L., & Singh, V. K. Unique in the shopping mall: On the reidentifiability of credit card metadata. *Science*, 2015.

[Duckham & Kulik 2005] M. Duckham and L. Kulik. A formal model of obfuscation and negotiation for location privacy. In *Pervasive Computing*, 2005.

[Dwork et al 2010] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual observation. In *STOC*, 2010

[Eagle et al 2009] N. Eagle, A. S. Pentland, and D. Lazer, “Inferring friendship network structure by using mobile phone data,” *P NATL ACAD SCI USA*, 2009

[Ester 1996] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering clusters in large spatial databases with noise,” in *KDD*, 1996.

[Felbo et al 2017] Felbo, B., Sundsøy, P., Lehmann, S., & de Montjoye, Y. A. Modeling the Temporal Nature of Human Behavior for Demographics Prediction. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, 2017.

[Gambs et al 2012] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Next place prediction using mobility markov chains,” in *MPM*, 2012.

[Golle & Partridge 2009] Golle, P., & Partridge, K. (2009, May). On the anonymity of home/work location pairs. In *Pervasive*, 2009

[Gruteser & Grunwald 2003] M. Gruteser and D. Grunwald. Anonymous usage of location-based services through spatial and temporal cloaking. In *MobiSys*, 2003.

[Hoh 2007] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, “Preserving privacy in GPS traces via uncertainty-aware path cloaking,” in *CCS*, 2007.

[Huang 2006] L. Huang, H. Yamane, K. Matsuura, and K. Sezaki, “Silent cascade: Enhancing location privacy without communication qos degradation,” in *SPC*. 2006.

[Krumm 2007] J. Krumm. Inference attacks on location tracks. In *Pervasive*, 2007.

References

[Krumm 2009] Krumm, J. (2009). A survey of computational location privacy. *Personal and Ubiquitous Computing*, 13(6), 391-399.

[Liao et al 2005] L. Liao, D. Fox, and H. Kautz. Location-based activity recognition using relational Markov networks. In IJCAI, 2005.

[Liao et al 2007] L. Liao, D. J. Patterson, D. Fox, and H. Kautz. Learning and inferring transportation routines. *Artificial Intelligence*, (171):311–331, 2007

[Meyerovitz & Choudhury 2009] Meyerowitz, J., & Roy Choudhury, R. Hiding stars with fireworks: location privacy through camouflage. In Mobicomm 2009.

[Oya et al 2017] S. Oya, C. Troncoso, and F. Perez-Gonzalez, “Back to the drawing board: Revisiting the design of optimal location privacy-preserving mechanisms,” in CCS, 2017.

[Oya et al 2017b] S. Oya, C. Troncoso, and F. Pérez-González. Is Geo-Indistinguishability What You Are Looking for? WPES 2017

[Pang & Zhang 2017] J. Pang and Y. Zhang, DeepCity: A Feature Learning Framework for Mining Location Check-Ins. ICWSM 2017

[Quercia et al 2011] D. Quercia, I. Leontiadis, L. McNamara, C. Mascolo, and J. Crowcroft. Spotme if you can: Randomized responses for location obfuscation on mobile phones. In ICDCS, 2011

[Pelleg & Moore 2000] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient estimation of the number of clusters,” ICML, 2000.

[Rastogi & Nath 2010] V. Rastogi and S. Nath. Differentially private aggregation of distributed time-series with transformation and encryption. In SIGMOD, 2010

[Shokri et al 2010] R. Shokri, C. Troncoso, C. Díaz, J. Freudiger, J.-P. Hubaux. Unraveling an old cloak. k-anonymity for location privacy. WPES 2010.

[Shokri et al 2011] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux, “Quantifying location privacy,” IEEE S&P, 2011.

[Zhang & Bolot 2011] H. Zang and J. Bolot, “Anonymization of location data does not work: A large-scale measurement study,” MobiCom, 2011.